General affine adjunctions, Nullstellensätze, and dualities

We introduce and investigate a category-theoretic abstraction of the standard "system-solution" adjunction in affine algebraic geometry. We then look further into these geometric adjunctions at different levels of generality, from syntactic categories to (possibly infinitary) equational classes of algebras. In doing so, we discuss the relationships between the dualities induced by our framework and the well-established theory of concrete dual adjunctions. In the context of general algebra we prove an analogue of Hilbert's Nullstellensatz, thereby achieving a complete characterisation of the fixed points on the algebraic side of the adjunction.

[1]  V. E. Cazanescu Algebraic theories , 2004 .

[2]  J. Baez Isbell Duality , 2022, 2212.11079.

[3]  A. Holme Categories and Functors , 2012 .

[4]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[5]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[6]  G. Birkhoff Subdirect unions in universal algebra , 1944 .

[7]  George Gratzer,et al.  Universal Algebra , 1979 .

[8]  Andreas Blass,et al.  Classifying topoi and finite forcing , 1983 .

[9]  M. D. Weir Hewitt-Nachbin Spaces , 1975 .

[10]  B. Banaschewski More on Compact Hausdorff Spaces and Finitary Duality , 1984, Canadian Journal of Mathematics.

[11]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[12]  Luca Spada,et al.  Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras , 2013, Ann. Pure Appl. Log..

[13]  J. Słomiński,et al.  The theory of abstract algebras with infinitary operations , 1959 .

[14]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[15]  T. Willmore Algebraic Geometry , 1973, Nature.

[16]  W. M. Beynon Duality Theorems for Finitely Generated Vector Lattices , 1975 .

[17]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[18]  Jirí Adámek,et al.  Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .

[19]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[20]  F. E. J. Linton,et al.  Some Aspects of Equational Categories , 1966 .

[21]  Olivia Caramello,et al.  The Morita-equivalence between MV-algebras and abelian $\ell$-groups with strong unit , 2013, 1312.1272.

[22]  M. Makkai,et al.  First order categorical logic , 1977 .

[23]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[24]  Olivia Caramello Extensions of flat functors and theories of presheaf type , 2014, 1404.4610.

[25]  Olivia Caramello SYNTACTIC CHARACTERIZATIONS OF PROPERTIES OF CLASSIFYING TOPOSES , 2012 .

[26]  L. Pontrjagin,et al.  The Theory of Topological Commutative Groups , 1934 .

[27]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[28]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[29]  Joan W Negrepontis Duality in analysis from the point of view of triples , 1971 .

[30]  B. Plotkin Varieties of algebras and algebraic varieties , 1996 .

[31]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[32]  Hilary A. Priestley,et al.  Ordered Sets and Duality for Distributive Lattices , 1984 .

[33]  Olivia Caramello,et al.  On the geometric theory of local MV-algebras , 2016, 1602.03867.

[34]  Emmy Noether Idealtheorie in Ringbereichen , 1921 .

[35]  R. Tennant Algebra , 1941, Nature.

[36]  Vincenzo Marra,et al.  The Dual Adjunction between MV-algebras and Tychonoff Spaces , 2012, Stud Logica.

[37]  Felix Hueber,et al.  Locally Presentable And Accessible Categories , 2016 .

[38]  F. W. Lawvere,et al.  Some algebraic problems in the context of functorial semantics of algebraic theories , 1968 .

[39]  Vincenzo Marra,et al.  Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) , 2015, 1508.07750.

[40]  R. McKenzie,et al.  Algebras, Lattices, Varieties , 1988 .

[41]  Jiří Rosický,et al.  On the equational theory ofC*-algebras , 1993 .

[43]  Olivia Caramello,et al.  Lattice-Ordered Abelian Groups and Perfect MV-Algebras: a Topos-Theoretic Perspective , 2016, Bull. Symb. Log..

[44]  Walter Tholen,et al.  Nullstellen and Subdirect Representation , 2014, Appl. Categorical Struct..

[45]  A. Myasnikov,et al.  Algebraic geometry over algebraic structures. II. Foundations , 2010, 1002.3562.

[46]  Yves Diers Affine algebraic sets relative to an algebraic theory , 1999 .