Relative hyperbolicity and relative quasiconvexity for countable groups

We lay the foundations for the study of relatively quasiconvex subgroups of relatively hyperbolic groups. These foundations require that we first work out a coherent theory of countable relatively hyperbolic groups (not necessarily finitely generated). We prove the equivalence of Gromov, Osin, and Bowditch's definitions of relative hyperbolicity for countable groups. We then give several equivalent definitions of relatively quasiconvex subgroups in terms of various natural geometries on a relatively hyperbolic group. We show that each relatively quasiconvex subgroup is itself relatively hyperbolic, and that the intersection of two relatively quasiconvex subgroups is again relatively quasiconvex. In the finitely generated case, we prove that every undistorted subgroup is relatively quasiconvex, and we compute the distortion of a finitely generated relatively quasiconvex subgroup.

[1]  Gaven Martin,et al.  Discrete Quasiconformal Groups I , 1987 .

[2]  Brian H. Bowditch,et al.  Geometrical finiteness with variable negative curvature , 1995 .

[3]  Eduardo Martínez-Pedroza Combination of quasiconvex subgroups of relatively hyperbolic groups , 2007, 0709.2113.

[4]  Benson Farb,et al.  Relatively Hyperbolic Groups , 1998 .

[5]  Brian H. Bowditch,et al.  A topological characterisation of hyperbolic groups , 1998 .

[6]  A. O. Houcine On hyperbolic groups , 2006 .

[7]  Alan F. Beardon,et al.  Limit points of Kleinian groups and finite sided fundamental polyhedra , 1974 .

[8]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[9]  J. Cannon,et al.  Transactions of the American Mathematical Society a Characterization of Cocompact Hyperbolic and Finite-volume Hyperbolic Groups in Dimension Three , 2022 .

[10]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[11]  D. V. Osin Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems , 2004 .

[12]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[13]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[14]  Brian H. Bowditch,et al.  Geometrical Finiteness for Hyperbolic Groups , 1993 .

[15]  S. Brick On Dehn functions and products of groups , 1993 .

[16]  Eduardo Martínez Pedroza Combination of quasiconvex subgroups of relatively hyperbolic groups , 2009 .

[17]  M. Sapir,et al.  On Dehn functions of free products of groups , 1999 .

[18]  Peripheral fillings of relatively hyperbolic groups , 2006 .

[19]  M. Raghunathan,et al.  Fundamental Domains for Lattices in (R-)rank 1 Semisimple Lie Groups , 1970 .

[20]  B. Apanasov Geometrically finite hyperbolic structures on manifolds , 1983 .

[21]  A. I. MathematicaVolumen Negatively Curved Groups Have the Convergence Property I , 1995 .

[22]  Daniel Groves,et al.  Dehn filling in relatively hyperbolic groups , 2006 .

[23]  Combination of convergence groups , 2002, math/0203258.

[24]  G. Christopher Hruska Geometric invariants of spaces with isolated flats , 2004 .

[25]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[26]  Perry Susskind,et al.  Limit sets of geometrically finite hyperbolic groups , 1992 .

[27]  On Quasiconvexity and Relative Hyperbolic Structures , 2008, 0811.2384.

[28]  Cornelia Drutu,et al.  Tree-graded spaces and asymptotic cones of groups , 2004 .

[29]  François Dahmani Les groupes relativement hyperboliques et leurs bords , 2003 .

[30]  Jason Fox Manning,et al.  SEPARATION OF RELATIVELY QUASICONVEX SUBGROUPS , 2008, 0811.4001.

[31]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[32]  A. Yaman,et al.  A topological characterisation of relatively hyperbolic groups , 2004 .

[33]  Donovan Yves Rebbechi Algorithmic Properties of Relatively Hyperbolic Groups , 2003 .

[34]  I. Agol,et al.  Residual finiteness, QCERF, and fillings of hyperbolic groups , 2008, 0802.0709.

[35]  A. Lubotzky Lattices in rank one Lie groups over local fields , 1991 .

[36]  Pekka Tukia,et al.  Conical limit points and uniform convergence groups , 1998 .

[37]  Eric Freden NEGATIVELY CURVED GROUPS HAVE THE CONVERGENCE PROPERTY I , 2008 .