Sparse representation and learning in visual recognition: Theory and applications

Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete dictionary. A rational behind this is the sparse connectivity between nodes in human brain. This paper presents a survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition. It covers both the theory and application aspects. We first review the sparse representation and learning theory including general sparse representation, structured sparse representation, high-dimensional nonlinear learning, Bayesian compressed sensing, sparse subspace learning, non-negative sparse representation, robust sparse representation, and efficient sparse representation. We then introduce the applications of sparse theory to various visual recognition tasks, including feature representation and selection, dictionary learning, Sparsity Induced Similarity (SIS) measures, sparse coding based classification frameworks, and sparsity-related topics.

[1]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[2]  Jian Zhang,et al.  Efficiently training a better visual detector with sparse eigenvectors , 2009, CVPR.

[3]  Vivek K. Goyal,et al.  Compressive depth map acquisition using a single photon-counting detector: Parametric signal processing meets sparsity , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[5]  Bernard Ng,et al.  Generalized group sparse classifiers with application in fMRI brain decoding , 2011, CVPR 2011.

[6]  Nenghai Yu,et al.  Non-negative low rank and sparse graph for semi-supervised learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[8]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[9]  Jean Ponce,et al.  Sparse image representation with epitomes , 2011, CVPR 2011.

[10]  Liang-Tien Chia,et al.  Local features are not lonely – Laplacian sparse coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Yi Li,et al.  Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model , 2010, ECCV.

[12]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[14]  Qi Tian,et al.  Image classification by non-negative sparse coding, low-rank and sparse decomposition , 2011, CVPR 2011.

[15]  Lei Zhang,et al.  Multi-label sparse coding for automatic image annotation , 2009, CVPR.

[16]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[17]  Babak Hassibi,et al.  On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.

[18]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[19]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[20]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[21]  Vincent Lepetit,et al.  Are sparse representations really relevant for image classification? , 2011, CVPR 2011.

[22]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[23]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[24]  Lawrence Carin,et al.  Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[25]  Ming-Hsuan Yang,et al.  Fast sparse representation with prototypes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Xian-Sheng Hua,et al.  Ensemble Manifold Regularization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[28]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Ke Huang,et al.  Sparse Representation for Signal Classification , 2006, NIPS.

[30]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[32]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[33]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[34]  Shang-Hong Lai,et al.  Learning component-level sparse representation using histogram information for image classification , 2011, 2011 International Conference on Computer Vision.

[35]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[36]  Alain Rakotomamonjy,et al.  Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms , 2011, Signal Process..

[37]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[38]  Larry S. Davis,et al.  Learning a discriminative dictionary for sparse coding via label consistent K-SVD , 2011, CVPR 2011.

[39]  Janusz A. Starzyk,et al.  Sparse Coding in Sparse Winner Networks , 2007, ISNN.

[40]  Qionghai Dai,et al.  Video denoising using shape-adaptive sparse representation over similar spatio-temporal patches , 2011, Signal Process. Image Commun..

[41]  Fei-Fei Li,et al.  Online detection of unusual events in videos via dynamic sparse coding , 2011, CVPR 2011.

[42]  J. CandesE.,et al.  Robust uncertainty principles , 2006 .

[43]  Hong Cheng,et al.  Sparsity induced similarity measure for label propagation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[44]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[45]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[46]  Ajmal S. Mian,et al.  Sparse approximated nearest points for image set classification , 2011, CVPR 2011.

[47]  Shuicheng Yan,et al.  Learning With $\ell ^{1}$-Graph for Image Analysis , 2010, IEEE Transactions on Image Processing.

[48]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[49]  Rabab Kreidieh Ward,et al.  Classification via group sparsity promoting regularization , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[50]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[51]  Jian Yang,et al.  Robust sparse coding for face recognition , 2011, CVPR 2011.

[52]  Narendra Ahuja,et al.  Imaging via three-dimensional compressive sampling (3DCS) , 2011, 2011 International Conference on Computer Vision.

[53]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[54]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[55]  James C. Gee,et al.  Estimation of image bias field with sparsity constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[57]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Zi Huang,et al.  Tag localization with spatial correlations and joint group sparsity , 2011, CVPR 2011.

[59]  John D. Lafferty,et al.  Learning image representations from the pixel level via hierarchical sparse coding , 2011, CVPR 2011.

[60]  Chun Chen,et al.  Image-based facial sketch-to-photo synthesis via online coupled dictionary learning , 2012, Inf. Sci..

[61]  David B. Dunson,et al.  Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images , 2012, IEEE Transactions on Image Processing.

[62]  Zhigang Luo,et al.  NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization , 2012, IEEE Transactions on Signal Processing.

[63]  Fuchun Sun,et al.  Visual Tracking Using Sparsity Induced Similarity , 2010, 2010 20th International Conference on Pattern Recognition.

[64]  CarinLawrence,et al.  Compressive sensing on manifolds using a nonparametric mixture of factor analyzers , 2010 .

[65]  Haibin Ling,et al.  Sparse representation of cast shadows via ℓ1-regularized least squares , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[66]  Wufan Chen,et al.  Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning , 2012, Signal Process..

[67]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[68]  Allen Y. Yang,et al.  Informative feature selection for object recognition via Sparse PCA , 2011, 2011 International Conference on Computer Vision.

[69]  Gang Hua,et al.  A nonnegative sparsity induced similarity measure with application to cluster analysis of spam images , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[70]  René Vidal,et al.  Robust classification using structured sparse representation , 2011, CVPR 2011.

[71]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[72]  Yu Zhang,et al.  Face Recognition Using the Feature Fusion Technique Based on LNMF and NNSC Algorithms , 2010, ICIC.

[73]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[74]  Mohamed-Jalal Fadili,et al.  Activelets: Wavelets for sparse representation of hemodynamic responses , 2011, Signal Process..

[75]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[76]  Anders P. Eriksson,et al.  Is face recognition really a Compressive Sensing problem? , 2011, CVPR 2011.

[77]  TaoDacheng,et al.  Manifold elastic net , 2011 .

[78]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[79]  Babak Hassibi,et al.  On the reconstruction of block-sparse signals with an optimal number of measurements , 2009, IEEE Trans. Signal Process..

[80]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[81]  Patrik O. Hoyer,et al.  Non-negative sparse coding , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[82]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[83]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[84]  Hiêp Quang Luong,et al.  Augmented Lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data , 2011, Signal Process..

[85]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[86]  Shuicheng Yan,et al.  Visual classification with multi-task joint sparse representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[87]  Zhigang Luo,et al.  Non-Negative Patch Alignment Framework , 2011, IEEE Transactions on Neural Networks.

[88]  Rama Chellappa,et al.  Sparse dictionary-based representation and recognition of action attributes , 2011, 2011 International Conference on Computer Vision.

[89]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[90]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[91]  J. CandesE.,et al.  Near-Optimal Signal Recovery From Random Projections , 2006 .

[92]  Anton van den Hengel,et al.  Sharing features in multi-class boosting via group sparsity , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[93]  Lei Zhang,et al.  Centralized sparse representation for image restoration , 2011, 2011 International Conference on Computer Vision.

[94]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[95]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[96]  David Zhang,et al.  Fisher Discrimination Dictionary Learning for sparse representation , 2011, 2011 International Conference on Computer Vision.

[97]  Xiaohui Chen,et al.  Low-rank matrix decomposition in L1-norm by dynamic systems , 2012, Image Vis. Comput..

[98]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[99]  Junzhou Huang,et al.  Learning with dynamic group sparsity , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[100]  Thomas S. Huang,et al.  Close the loop: Joint blind image restoration and recognition with sparse representation prior , 2011, 2011 International Conference on Computer Vision.

[101]  Richard I. Hartley,et al.  Graph connectivity in sparse subspace clustering , 2011, CVPR 2011.

[102]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[103]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[104]  Zhigang Luo,et al.  Manifold Regularized Discriminative Nonnegative Matrix Factorization With Fast Gradient Descent , 2011, IEEE Transactions on Image Processing.

[105]  John Shawe-Taylor,et al.  MahNMF: Manhattan Non-negative Matrix Factorization , 2012, ArXiv.

[106]  Jun Yu,et al.  Interactive cartoon reusing by transfer learning , 2012, Signal Process..

[107]  Junsong Yuan,et al.  Sparse reconstruction cost for abnormal event detection , 2011, CVPR 2011.

[108]  David G. Lowe,et al.  Similarity Metric Learning for a Variable-Kernel Classifier , 1995, Neural Computation.

[109]  Ying Wu,et al.  Sparsity model for robust optical flow estimation at motion discontinuities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[110]  Kiyoharu Aizawa,et al.  Robust photometric stereo using sparse regression , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[111]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[112]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[113]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[114]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[115]  Alfred O. Hero,et al.  Efficient learning of sparse, distributed, convolutional feature representations for object recognition , 2011, 2011 International Conference on Computer Vision.

[116]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[117]  Chun Chen,et al.  Sparse Coding for Flexible, Robust 3D Facial-Expression Synthesis , 2012, IEEE Computer Graphics and Applications.

[118]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[119]  Svetha Venkatesh,et al.  Joint learning and dictionary construction for pattern recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[120]  Lei Zhang,et al.  Sparsity-based image denoising via dictionary learning and structural clustering , 2011, CVPR 2011.

[121]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[122]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[123]  Anamitra Makur,et al.  Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction , 2011, IEEE Signal Processing Letters.

[124]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[125]  Liang-Tien Chia,et al.  Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.

[126]  Dacheng Tao,et al.  Sparse transfer learning for interactive video search reranking , 2012, TOMCCAP.

[127]  Lawrence Carin,et al.  Tree-Structured Compressive Sensing With Variational Bayesian Analysis , 2010, IEEE Signal Processing Letters.

[128]  Narendra Ahuja,et al.  Hybrid Compressive Sampling via a New Total Variation TVL1 , 2010, ECCV.

[129]  Nanning Zheng,et al.  Expression transfer for facial sketch animation , 2011, Signal Process..

[130]  Yi Li,et al.  Learning shift-invariant sparse representation of actions , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[131]  Larry S. Davis,et al.  Submodular dictionary learning for sparse coding , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[132]  Rabab K. Ward,et al.  Compressed sensing of color images , 2010, Signal Process..

[133]  Jiayan Jiang,et al.  Learning a mixture of sparse distance metrics for classification and dimensionality reduction , 2011, 2011 International Conference on Computer Vision.

[134]  Yang Yu,et al.  Automatic image annotation using group sparsity , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[135]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[136]  Rama Chellappa,et al.  P2C2: Programmable pixel compressive camera for high speed imaging , 2011, CVPR 2011.

[137]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[138]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[139]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[140]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[141]  David B. Dunson,et al.  Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.

[142]  Rama Chellappa,et al.  Compressive Acquisition of Dynamic Scenes , 2010, ECCV.

[143]  Ran He,et al.  Nonnegative sparse coding for discriminative semi-supervised learning , 2011, CVPR 2011.

[144]  J. Eggert,et al.  Sparse coding and NMF , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[145]  Tong Zhang,et al.  Improved Local Coordinate Coding using Local Tangents , 2010, ICML.

[146]  Qionghai Dai,et al.  Ways to sparse representation: An overview , 2009, Science in China Series F: Information Sciences.

[147]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[148]  Baoxin Li,et al.  Discriminative affine sparse codes for image classification , 2011, CVPR 2011.

[149]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[150]  René Vidal,et al.  Clustering disjoint subspaces via sparse representation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[151]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[152]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[153]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[154]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[155]  Hong Cheng,et al.  Robust Sparse PCA via Weighted Elastic Net , 2012, CCPR.

[156]  Shie Qian,et al.  Signal representation using adaptive normalized Gaussian functions , 1994, Signal Process..

[157]  A. TroppJ. Greed is good , 2006 .

[158]  Hong Cheng,et al.  Recovering shape and motion by a dynamic system for low-rank matrix approximation in L1 norm , 2012, The Visual Computer.

[159]  Xindong Wu,et al.  Manifold elastic net: a unified framework for sparse dimension reduction , 2010, Data Mining and Knowledge Discovery.

[160]  Zhigang Luo,et al.  Online Nonnegative Matrix Factorization With Robust Stochastic Approximation , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[161]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[162]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[163]  Dengxin Dai,et al.  Three-layer Spatial Sparse Coding for Image Classification , 2010, 2010 20th International Conference on Pattern Recognition.

[164]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[165]  Chong-Wah Ngo,et al.  Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval , 2009, Comput. Vis. Image Underst..

[166]  Chris H. Q. Ding,et al.  Image Categorization Using Directed Graphs , 2010, ECCV.

[167]  Xiaogang Wang,et al.  Optical flow estimation using learned sparse model , 2011, 2011 International Conference on Computer Vision.

[168]  Zhihua Zhang,et al.  A non-convex relaxation approach to sparse dictionary learning , 2011, CVPR 2011.

[169]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[170]  Baoxin Li,et al.  A compressive sensing approach for expression-invariant face recognition , 2009, CVPR.

[171]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[172]  Junzhou Huang,et al.  Automatic Image Annotation and Retrieval Using Group Sparsity , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[173]  Thomas S. Huang,et al.  Bilevel sparse coding for coupled feature spaces , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[174]  Thomas S. Huang,et al.  Efficient Highly Over-Complete Sparse Coding Using a Mixture Model , 2010, ECCV.

[175]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[176]  Robert Andersen Modern Methods for Robust Regression , 2007 .

[177]  Jiawei Han,et al.  Non-negative Matrix Factorization on Manifold , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[178]  C. Peng,et al.  Fast sparse representation model for I 1 -norm minimisation problem , 2012 .

[179]  Liang-Tien Chia,et al.  Multi-layer group sparse coding — For concurrent image classification and annotation , 2011, CVPR 2011.

[180]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[181]  Andrew Zisserman,et al.  Sparse kernel approximations for efficient classification and detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[182]  David B. Dunson,et al.  Multi-task compressive sensing with Dirichlet process priors , 2008, ICML '08.

[183]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Tomaso A. Poggio,et al.  A Sparse Representation for Function Approximation , 1998, Neural Computation.

[185]  Qinghua Hu,et al.  A linear subspace learning approach via sparse coding , 2011, 2011 International Conference on Computer Vision.

[186]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[187]  Yueting Zhuang,et al.  Sparse representation using nonnegative curds and whey , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[188]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[189]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[190]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[191]  Nanning Zheng,et al.  A deformable local image descriptor , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[192]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[193]  Vassilios Morellas,et al.  Tensor Sparse Coding for Region Covariances , 2010, ECCV.

[194]  Yu Zhang,et al.  Image compressed sensing based on wavelet transform in contourlet domain , 2011, Signal Process..

[195]  Hujun Bao,et al.  Sparse concept coding for visual analysis , 2011, CVPR 2011.

[196]  Tong Zhang,et al.  High Dimensional Nonlinear Learning using Local Coordinate Coding , 2009 .

[197]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[198]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .