Controlling the Polarization State of Light with a Dispersion-Free Metastructure

Metamaterials, artificial structures with unexpected properties, only function over a limited spectral window. Scientists have recently determined that the technique of combining a metallic metamaterial with a dielectric interlayer creates a device that modulates light over a wide range of frequencies.

[1]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[2]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[3]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[4]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[5]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[6]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[7]  Hong-qiang Li,et al.  Metallic helix array as a broadband wave plate. , 2011, Physical review letters.

[8]  Anders Pors,et al.  Efficient and broadband quarter-wave plates by gap-plasmon resonators. , 2013, Optics express.

[9]  Andrea Alù,et al.  Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. , 2013, Nano letters.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[12]  D. R. Chowdhury,et al.  A broadband planar terahertz metamaterial with nested structure. , 2011, Optics express.

[13]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[14]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[15]  Jun Shao,et al.  Switching the electric and magnetic responses in a metamaterial , 2009 .

[16]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[17]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[18]  Y. Lu,et al.  Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. , 2010, Optics letters.

[19]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[20]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[21]  M. Albooyeh,et al.  Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state , 2012, 1201.5800.

[22]  E. H. Linfoot Principles of Optics , 1961 .

[23]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[24]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[25]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[26]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[27]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[28]  Yunchou Xing,et al.  Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators , 2011, 1109.3775.

[29]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[30]  D H Werner,et al.  Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces. , 2013, Optics express.

[31]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[32]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[33]  M. Wegener,et al.  Tapered gold-helix metamaterials as improved circular polarizers , 2012 .

[34]  J.D. Farina Integrated optics: Theory and technology (springer series in optical sciences, vol. 33) , 1984, Proceedings of the IEEE.

[35]  J. O’Hara,et al.  Antireflection coating using metamaterials and identification of its mechanism. , 2010, Physical review letters.