Photonic crystal structures in ion-sliced lithium niobate thin films.

We report on the first realization of photonic crystal structures in 600-nm thick ion-sliced, single-crystalline lithium niobate thin films bonded on a lithium niobate substrate using adhesive polymer benzocyclobutene (BCB). Focused ion beam (FIB) milling is used for fast prototyping of photonic crystal structures with regular cylindrical holes. Unwanted redeposition effects leading to conically shaped holes in lithium niobate are minimized due to the soft BCB layer underneath. A high refractive index contrast of 0.65 between the lithium niobate thin film and the BCB underlayer enables strong light confinement in the vertical direction. For TE polarized light a triangular photonic crystal lattice of air holes with a diameter of 240 nm and a separation of 500 nm has a photonic bandgap in the wavelength range from 1390 to 1500 nm. Experimentally measured transmission spectra show a spectral power dip for the GK direction of the reci ocal lattice with an extinction ratio of up to 15 dB. This is in good agreement with numerical simulations based on the three-dimensional plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method.

[1]  D. Djukic,et al.  Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation , 2006 .

[2]  Yikai Su,et al.  Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators. , 2009, Applied optics.

[3]  Jennifer H. Shin,et al.  Three‐Dimensional Network Photonic Crystals via Cyclic Size Reduction/ Infiltration of Sea Urchin Exoskeleton , 2004 .

[4]  M. Nieto-Vesperinas,et al.  Imaging properties of photonic crystals. , 2007, Optics express.

[5]  Toshihiko Baba,et al.  Slow Light Engineering in Photonic Crystals , 2006 .

[6]  F. Baida,et al.  Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications , 2008 .

[7]  Susumu Noda,et al.  Fine-tuned high-Q photonic-crystal nanocavity. , 2005, Optics express.

[8]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[9]  M. Bazzan,et al.  Purcell effect observation in erbium doped lithium niobate photonic crystal structures , 2008 .

[10]  Kerry J. Vahala,et al.  Demonstration of an erbium doped microdisk laser on a silicon chip , 2006, QELS 2006.

[11]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[12]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[13]  Paul Muralt,et al.  Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab , 2009 .

[14]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[15]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[16]  M. Koechlin Electro-optical microresonators in ion-sliced lithium niobate , 2009 .

[17]  Maria-Pilar Bernal,et al.  Experimental and theoretical characterization of a lithium niobate photonic crystal , 2005 .

[18]  Maria-Pilar Bernal,et al.  Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons , 2006 .

[19]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[20]  Steven G. Johnson,et al.  Guided modes in photonic crystal slabs , 1999 .

[21]  A. Guarino Electro-optic microring resonators in inorganic crystals for photonic applications , 2007 .

[22]  J. Raimond,et al.  Very low threshold whispering-gallery-mode microsphere laser. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Vito Mocella Negative refraction in Photonic Crystals: thickness dependence and Pendellösung phenomenon. , 2005, Optics express.

[24]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[25]  J. Faist,et al.  Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies , 2006 .

[26]  Steven G. Johnson,et al.  A three-dimensional optical photonic crystal with designed point defects , 2004, Nature.

[27]  B. Offrein,et al.  Enhanced feedback in organic photonic-crystal lasers , 2005 .

[28]  P. Günter,et al.  Ion-sliced lithium niobate thin films for active photonic devices , 2009 .

[29]  B. Offrein,et al.  Enhanced feedback and experimental band mapping of organic photonic-crystal lasers , 2006 .

[30]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[31]  J. G. Fleming,et al.  Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation , 2003 .

[32]  Shawn-Yu Lin,et al.  Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 microm. , 1999, Optics letters.

[33]  J Greve,et al.  Sensor based on an integrated optical microcavity. , 2002, Optics letters.

[34]  Peter Günter,et al.  High-resolution laser lithography system based on two-dimensional acousto-optic deflection. , 2009, The Review of scientific instruments.

[35]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[37]  G. Burr,et al.  The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching , 2007 .

[38]  K. Vahala,et al.  Integration of Single‐Crystal LiNbO3 Thin Film on Silicon by Laser Irradiation and Ion Implantation– Induced Layer Transfer , 2006 .

[39]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[40]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[41]  Band structure of honeycomb photonic crystal slabs , 2006, cond-mat/0604153.

[42]  Thomas L Koch,et al.  Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator , 2005 .

[43]  N. Courjal,et al.  Nanostructuring lithium niobate substrates by focused ion beam milling , 2005, 0801.4201.

[44]  Masaya Notomi,et al.  Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs , 2005 .

[45]  Lech Wosinski,et al.  Compact polarization beam splitter employing positive/negative refraction based on photonic crystals of pillar type , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[46]  Shojiro Kawakami,et al.  Optical directional couplers based on autocloned photonic crystals , 2003 .

[47]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[48]  G. Poberaj,et al.  Optical Microring Resonators in Fluorine-Implanted Lithium Niobate for Electrooptical Switching and Filtering , 2009, IEEE Photonics Technology Letters.

[49]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[50]  William H. Steier,et al.  Lithium niobate ridge waveguides and modulators fabricated using smart guide , 2005 .

[51]  G W Burr,et al.  The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals. , 2008, Optics express.