Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map

We consider the horocyclic flow corresponding to a (topologically mixing) Anosov flow or diffeomorphism, and establish the uniqueness of transverse quasi-invariant measures with Hölder Jacobians. In the same setting, we give a precise characterization of the equilibrium states of the hyperbolic system, showing that existence of a family of Radon measures on the horocyclic foliation such that any probability (invariant or not) having conditionals given by this family, necessarily is the unique equilibrium state of the system.

[1]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[2]  M. Urbanski,et al.  Conformal Fractals: Ergodic Theory Methods , 2010 .

[3]  E. Hewitt,et al.  On the fundamental ideas of measure theory , 1962 .

[4]  Federico Rodriguez-Hertz,et al.  Equilibrium States for Center Isometries , 2021, 2103.07323.

[5]  B. Marcus,et al.  Unique ergodicity for horocycle foliations , 1977 .

[6]  H. Furstenberg The unique ergodigity of the horocycle flow , 1973 .

[7]  S. Patterson The limit set of a Fuchsian group , 1976 .

[8]  Rufus Bowen,et al.  Some systems with unique equilibrium states , 1974, Mathematical systems theory.

[9]  Jean-François Quint An overview of Patterson-Sullivan theory , 2022 .

[10]  M. Pollicott,et al.  Equilibrium States in Negative Curvature , 2012, 1211.6242.

[11]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[12]  Y. Sinai,et al.  Markov partitions and C-diffeomorphisms , 2020, Hamiltonian Dynamical Systems.

[13]  Barbara Schapira On quasi-invariant transverse measures for the horospherical foliation of a negatively curved manifold , 2002, Ergodic Theory and Dynamical Systems.

[14]  B. Marcus Unique ergodicity of the horocycle flow: Variable negative curvature case , 1975 .

[15]  P. Walters A VARIATIONAL PRINCIPLE FOR THE PRESSURE OF CONTINUOUS TRANSFORMATIONS. , 1975 .

[16]  Barbara Schapira Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie , 2003 .