Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map
暂无分享,去创建一个
[1] Marina Ratner,et al. Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .
[2] M. Urbanski,et al. Conformal Fractals: Ergodic Theory Methods , 2010 .
[3] E. Hewitt,et al. On the fundamental ideas of measure theory , 1962 .
[4] Federico Rodriguez-Hertz,et al. Equilibrium States for Center Isometries , 2021, 2103.07323.
[5] B. Marcus,et al. Unique ergodicity for horocycle foliations , 1977 .
[6] H. Furstenberg. The unique ergodigity of the horocycle flow , 1973 .
[7] S. Patterson. The limit set of a Fuchsian group , 1976 .
[8] Rufus Bowen,et al. Some systems with unique equilibrium states , 1974, Mathematical systems theory.
[9] Jean-François Quint. An overview of Patterson-Sullivan theory , 2022 .
[10] M. Pollicott,et al. Equilibrium States in Negative Curvature , 2012, 1211.6242.
[11] David Ruelle,et al. A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .
[12] Y. Sinai,et al. Markov partitions and C-diffeomorphisms , 2020, Hamiltonian Dynamical Systems.
[13] Barbara Schapira. On quasi-invariant transverse measures for the horospherical foliation of a negatively curved manifold , 2002, Ergodic Theory and Dynamical Systems.
[14] B. Marcus. Unique ergodicity of the horocycle flow: Variable negative curvature case , 1975 .
[15] P. Walters. A VARIATIONAL PRINCIPLE FOR THE PRESSURE OF CONTINUOUS TRANSFORMATIONS. , 1975 .
[16] Barbara Schapira. Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie , 2003 .