Nanoscale Materials for Lithium-Ion Batteries

Template synthesis is a versatile nanomaterial fabrication method used to make monodisperse nanoparticles of a variety of materials including metals, semiconductors, carbons, and polymers. We have used the template method to prepare nanostructured lithium-ion battery electrodes in which nanofibers or nanotubes of the electrode material protrude from an underlying current-collector surface like the bristles of a brush. Nanostructured electrodes of this type composed of carbon, LiMn 2 O 4 , V 2 O 5 , tin, TiO 2 , and TiS 2 have been prepared. In all cases, the nanostructured electrode showed dramatically improved rate capabilities relative to thin-film control electrodes composed of the same material. The rate capabilities are improved because the distance that Li + must diffuse in the solid state (the current- and power-limiting step in Li-ion battery electrodes) is significantly smaller in the nanostructured electrode. For example, in a nanofiber-based electrode, the distance that Li + must diffuse is restricted to the radius of the fiber, which may be as small as 50 nm. Recent developments in template-prepared nanostructured electrodes are reviewed.

[1]  R. Ruoff,et al.  Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method , 1998 .

[2]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[3]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[4]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[5]  Ralph E. White,et al.  Characterization of Commercially Available Lithium-Ion Batteries , 1998 .

[6]  C. R. Martin,et al.  Template Synthesis of Polypyrrole‐Coated Spinel LiMn2 O 4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries , 1997 .

[7]  Subbarao Surampudi,et al.  Development of low temperature Li-ion electrolytes for NASA and DoD applications , 2001 .

[8]  K. Jirage,et al.  Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the template-synthesis method , 1998 .

[9]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[10]  T. Brousse,et al.  Thin‐Film Crystalline SnO2‐Lithium Electrodes , 1998 .

[11]  J. Dahn,et al.  Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .

[12]  R. Moshtev,et al.  State of the art of commercial Li ion batteries , 2000 .

[13]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[14]  Haitao Huang,et al.  Ionic Conductivity of Microporous PVDF-HFP/PS Polymer Blends , 2001 .

[15]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[16]  A. Yamada,et al.  Reaction Mechanism of the Olivine-Type Li x ( Mn0.6Fe0.4 ) PO 4 ( 0 ⩽ x ⩽ 1 ) , 2001 .

[17]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[18]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[19]  W. Hsu,et al.  Electrochemical Li Insertion in B-Doped Multiwall Carbon Nanotubes , 2002 .

[20]  P. Novák,et al.  Vanadium Oxide Nanotubes. A New Nanostructured Redox‐Active Material for the Electrochemical Insertion of Lithium , 1999 .

[21]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[22]  B. Ratnakumar,et al.  Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates , 1999 .

[23]  B. Simon,et al.  Lithium Doping of Multiwalled Carbon Nanotubes Produced by Catalytic Decomposition , 2001 .

[24]  Kyoung-hee Lee,et al.  Studies on a New Series of Cross-Linked Polymer Electrolytes for a Lithium Secondary Battery , 2001 .

[25]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[26]  S. J. French,et al.  Phase relationships in the ambient temperature LixV2O5 system (0.1 , 1979 .

[27]  C. E. Tracy,et al.  Electrochemical Deposition of Vanadium Oxide in the Presence of Surfactants A Novel Approach toward High‐Rate Lithium Battery Cathodes , 1999 .

[28]  C. R. Martin,et al.  Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production , 1999 .

[29]  K. Jirage,et al.  Chemical‐Vapor Deposition‐Based Template Synthesis of Microtubular TiS2 Battery Electrodes , 1997 .

[30]  Liquan Chen,et al.  Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries , 2001 .

[31]  M. Doeff,et al.  A High-Rate Manganese Oxide for Rechargeable Lithium Battery Applications , 2001 .

[32]  R. Jungst,et al.  Energy and power characteristics of lithium-ion cells , 1998 .

[33]  S. Passerini,et al.  A 400 mAh/g aerogel-like V2O5 cathode for rechargeable lithium batteries , 1998 .

[34]  C. R. Martin,et al.  Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide , 1999 .

[35]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[36]  C. R. Martin,et al.  Improving the Volumetric Energy Densities of Nanostructured V 2 O 5 Electrodes Prepared Using the Template Method , 2001 .

[37]  Charles R. Martin,et al.  Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit , 1997 .

[38]  S. Passerini,et al.  Composites of V{sub 2}O{sub 5} aerogel and nickel fiber as high rate intercalation electrodes , 1999 .

[39]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[40]  D. Rolison,et al.  Spectroelectrochemical Investigations of Cation-Insertion Reactions at Sol−Gel-Derived Nanostructured, Mesoporous Thin Films of Manganese Oxide† , 2001 .

[41]  G. Nagasubramanian Electrical characteristics of 18650 Li-ion cells at low temperatures , 2001 .