Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon

A somatodendritic gradient of Cl(-) concentration ([Cl(-)](i)) has been postulated to generate GABA-evoked responses of different polarity in retinal bipolar cells, hyperpolarizing in OFF cells with low dendritic [Cl(-)](i), and depolarizing in ON cells with high dendritic [Cl(-)](i). As glutamate released by the photoreceptors depolarizes OFF cells and hyperpolarizes ON cells, the bipolars' antagonistic receptive field (RF) could be computed by simply integrating glutamatergic inputs from the RF center and GABAergic inputs from horizontal cells in the RF surround. Using ratiometric two-photon imaging of Clomeleon, a Cl(-) indicator transgenically expressed in ON bipolar cells, we found that dendritic [Cl(-)](i) exceeds somatic [Cl(-)](i) by up to 20 mM and that GABA application can lead to Cl(-) efflux (depolarization) in these dendrites. Blockers of Cl(-) transporters reduced the somatodendritic [Cl(-)](i) gradient. Hence, our results support the idea that ON bipolar cells employ a somatodendritic [Cl(-)](i) gradient to invert GABAergic horizontal cell input.

[1]  S. J. Kleene Origin of the chloride current in olfactory transduction , 1993, Neuron.

[2]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[3]  Horst Wallrabe,et al.  Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. , 2003, Methods.

[4]  Shigetada Nakanishi,et al.  Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells , 1994, Cell.

[5]  H. Wässle,et al.  Types of bipolar cells in the mouse retina , 2004, The Journal of comparative neurology.

[6]  Joachim W. Deitmer,et al.  On the mechanism of GABA-induced currents in cultured rat cortical neurons , 1999, Pflügers Archiv.

[7]  BJ Amos,et al.  Intrinsic hydrogen ion buffering in rat CNS neurones maintained in culture , 1996, Experimental physiology.

[8]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[9]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[10]  H. Wässle,et al.  Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. , 1998, Journal of neurophysiology.

[11]  Bruce R. Ransom,et al.  pH and brain function , 1998 .

[12]  F. Werblin Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[13]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[14]  pH regulation in horizontal cells of the skate retina. , 1998, Experimental eye research.

[15]  J. Voipio,et al.  The role of bicarbonate in GABAA receptor‐mediated IPSPs of rat neocortical neurones. , 1993, The Journal of physiology.

[16]  B. Sakmann,et al.  Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. , 1987, The Journal of physiology.

[17]  H. Wässle,et al.  Glycine and GABA receptors in the mammalian retina , 1998, Vision Research.

[18]  W. G. Owen,et al.  Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. , 1996, Journal of neurophysiology.

[19]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[20]  J. Voipio,et al.  Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurones. , 1993, Acta physiologica Scandinavica.

[21]  P. Sterling,et al.  Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina , 1994, Vision Research.

[22]  Maarten Kamermans,et al.  Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina , 2004, Current Opinion in Neurobiology.

[23]  P. Villa,et al.  Depolarizing effect of GABA in rod bipolar cells of the mouse retina , 2005, Vision Research.

[24]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[25]  H. Wässle,et al.  Localization of GABAA receptors in the rabbit retina , 1994, Cell and Tissue Research.

[26]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[27]  E. Friauf,et al.  Expression and Function of Chloride Transporters during Development of Inhibitory Neurotransmission in the Auditory Brainstem , 2003, The Journal of Neuroscience.

[28]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[29]  V. Wimmer,et al.  Targeted in vivo expression of proteins in the calyx of Held , 2004, Pflügers Archiv.

[30]  D. Protti,et al.  Calcium Currents and Calcium Signaling in Rod Bipolar Cells of Rat Retinal Slices , 1998, The Journal of Neuroscience.

[31]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[32]  A. Kaneko,et al.  Effects of glycine and GABA on isolated bipolar cells of the mouse retina. , 1990, The Journal of physiology.

[33]  S. M. Wu,et al.  Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Rafael Yuste,et al.  Imaging in Neuroscience and Development: A Laboratory Manual , 2004 .

[35]  S. Stone,et al.  Physiological and morphological properties of OFF- and ON-center bipolar cells in the Xenopus retina: Effects of glycine and GABA , 1991, Visual Neuroscience.

[36]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells , 1976, The Journal of general physiology.

[37]  S. Barnes,et al.  Modulation of transmission gain by protons at the photoreceptor output synapse. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Attwell,et al.  Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells , 2002, The Journal of physiology.

[39]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[40]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[41]  J. Toyoda,et al.  Analyses of bipolar cell responses elicited by polarization of horizontal cells , 1982, The Journal of general physiology.

[42]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments , 1976, The Journal of general physiology.

[43]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[44]  K. Ballanyi,et al.  GABA- and glycine-mediated fall of intracellular pH in rat medullary neurons in situ. , 1997, Journal of neurophysiology.

[45]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[46]  A. Feigenspan,et al.  Control of Dopamine Release in the Retina: a Transgenic Approach to Neural Networks , 1997, Neuron.

[47]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[48]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[49]  R. Dacheux,et al.  Intracellular chloride in retinal neurons: Measurement and meaning , 1983, Vision Research.

[50]  C. Inagaki,et al.  Uneven distribution of intracellular Cl− in rat hippocampal neurons , 1992, Neuroscience Letters.

[51]  Akimichi Kaneko,et al.  Intracellular chloride concentration is higher in rod bipolar cells than in cone bipolar cells of the mouse retina , 2001, Neuroscience Letters.

[52]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[53]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[54]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[55]  H. Wässle,et al.  GABA‐like immunoreactivity in the macaque monkey retina: A light and electron microscopic study , 1990, The Journal of comparative neurology.

[56]  S. Frings,et al.  Chloride Accumulation in Mammalian Olfactory Sensory Neurons , 2004, The Journal of Neuroscience.

[57]  S J Remington,et al.  Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. , 1997, Biochemistry.

[58]  E. A. Schwartz,et al.  Transport-mediated synapses in the retina. , 2002, Physiological reviews.

[59]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[60]  H. Wässle,et al.  Reversal potential of GABA-induced currents in rod bipolar cells of the rat retina , 1991, Visual Neuroscience.

[61]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[62]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[63]  W. G. Owen,et al.  Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander. , 1990, The Journal of physiology.