Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification

[1]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[2]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[3]  He,et al.  Analysis and synthesis of synchronous periodic and chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  King,et al.  Bistable chaos. I. Unfolding the cusp. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  T. Carroll,et al.  Synchronizing nonautonomous chaotic circuits , 1993 .

[6]  Lakshmanan,et al.  Transmission of signals by synchronization in a chaotic Van der Pol-Duffing oscillator. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[8]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[10]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[11]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[12]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[13]  Teh-Lu Liao,et al.  Design and circuit simulation of observer-based chaotic synchronization and communication systems , 1999 .

[14]  L. M. Pecora,et al.  PARAMETER-INSENSITIVE AND NARROW-BAND SYNCHRONIZATION OF CHAOTIC CIRCUITS , 1999 .

[15]  Paul Woafo,et al.  Synchronization: stability and duration time. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Y. Chembo Kouomou,et al.  Stability and optimization of chaos synchronization through feedback coupling with delay , 2002 .

[17]  LequanMin,et al.  A new theorem to synchronization of unified chaotic systems via adaptive control , 2003 .

[18]  Guanrong Chen,et al.  A simple global synchronization criterion for coupled chaotic systems , 2003 .

[19]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[20]  F. M. Moukam Kakmeni,et al.  A New Synchronization Principle for a Class of Lur'e Systems with Applications in Secure Communication , 2004, Int. J. Bifurc. Chaos.

[21]  Carlos Aguirre,et al.  A Panoramic View of Some perturbed Nonlinear Wave Equations , 2004, Int. J. Bifurc. Chaos.