An approach for improving the sampling efficiency in the Bayesian calibration of computationally expensive simulation models

[1] In recent years, interest in the Bayesian approach for the calibration of hydrological and environmental simulation (HES) models has been growing. To extract useful information on unknown parameters produced in a Bayesian calibration, it is often necessary to rely on samples drawn from the posterior distribution. Sampling a posterior distribution requires a large number of evaluations of the simulation model, and the total computational costs could be prohibitively high when the simulation model is computationally expensive. A new computing strategy is proposed in this paper to alleviate this computational difficulty by making better use of the information generated in a costly run of the HES model by using multiple evaluations of the posterior density in the less computationally expensive subspace of error model parameters. A multiple-try Markov chain Monte Carlo (MCMC) algorithm is designed to implement this idea and is benchmarked with the Metropolis-Hastings algorithm, a basic recipe for MCMC sampling. The results show that the proposed strategy has potential for improving the computational efficiency of posterior sampling and easing its implementation in the Bayesian calibration of computationally expensive HES models.

[1]  Luis A. Bastidas,et al.  Multicriteria parameter estimation for models of stream chemical composition , 2002 .

[2]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  J. Wayland Eheart,et al.  Low‐flow frequency exacerbation by irrigation withdrawals in the agricultural midwest under various climate change scenarios , 1999 .

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  P. Reichert,et al.  Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference , 2007 .

[8]  Richard H. White,et al.  Simulating water quality improvements in the Upper North Bosque River watershed due to phosphorus export through turfgrass sod , 2006 .

[9]  S. Sorooshian,et al.  Calibration of watershed models , 2003 .

[10]  Nicola Fohrer,et al.  Effects of land use changes on the nutrient balance in mesoscale catchments , 2003 .

[11]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[12]  Peter Reichert,et al.  Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland) , 2007 .

[13]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[14]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[15]  George Kuczera,et al.  Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts , 2006 .

[16]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[17]  Bettina Schaefli,et al.  Quantifying hydrological modeling errors through a mixture of normal distributions , 2007 .

[18]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[19]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[20]  David Huard,et al.  A Bayesian perspective on input uncertainty in model calibration: Application to hydrological model “abc” , 2006 .

[21]  Yalchin Efendiev,et al.  An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .

[22]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[23]  Fayçal Bouraoui,et al.  Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK) , 2002 .

[24]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[25]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[26]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[27]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[28]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[29]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[30]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[31]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[32]  G. Kuczera Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility , 1983 .

[33]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[34]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[35]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[36]  L. Gottschalk,et al.  Bayesian estimation of parameters in a regional hydrological model , 2002 .

[37]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[38]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[39]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[40]  Hua Xie,et al.  Hydrologic and Economic Implications of Climate Change for Typical River Basins of the Agricultural Midwestern United States , 2008 .

[41]  George Kuczera,et al.  Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration , 2007 .

[42]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[43]  Mark E. Borsuk,et al.  Bayesian parameter estimation in a mixed-order model of BOD decay , 2000 .

[44]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[45]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[46]  S. Sorooshian,et al.  Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.

[47]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[48]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .