Reviewing Theoretical and Numerical Models for PCM-embedded Cementitious Composites

Accumulating solar and/or environmental heat in walls of apartment buildings or houses is a way to level-out daily temperature differences and significantly cut back on energy demands. A possible way to achieve this goal is by developing advanced composites that consist of porous cementitious materials with embedded phase change materials (PCMs) that have the potential to accumulate or liberate heat energy during a chemical phase change from liquid to solid, or vice versa. This paper aims to report the current state of art on numerical and theoretical approaches available in the scientific literature for modelling the thermal behavior and heat accumulation/liberation of PCMs employed in cement-based composites. The work focuses on reviewing numerical tools for modelling phase change problems while emphasizing the so-called Stefan problem, or particularly, on the numerical techniques available for solving it. In this research field, it is the fixed grid method that is the most commonly and practically applied approach. After this, a discussion on the modelling procedures available for schematizing cementitious composites with embedded PCMs is reported.

[1]  Maria A. Founti,et al.  A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components , 2015 .

[2]  P H Price,et al.  The effect of latent heat on numerical solutions of the heat flow equation , 1954 .

[3]  G. Jilani,et al.  Numerical analysis of latent heat thermal energy storage system , 2007 .

[4]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[5]  Gaurav Sant,et al.  Porous inclusions as hosts for phase change materials in cementitious composites: Characterization, thermal performance, and analytical models , 2017 .

[6]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in concrete walls for energy savings , 2007 .

[7]  Zhiqiang Zhai,et al.  Modeling phase change materials embedded in building enclosure: A review , 2013 .

[8]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[9]  A. Oliva,et al.  Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction , 1998 .

[10]  Laurent Zalewski,et al.  Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM , 2014 .

[11]  Jingyu Huang,et al.  Establishment and experimental verification of PCM room's TRNSYS heat transfer model based on latent heat utilization ratio , 2014 .

[12]  Adriano Sciacovelli,et al.  Melting of PCM in a thermal energy storage unit: Numerical investigation and effect of nanoparticle enhancement , 2013 .

[13]  Xin Wang,et al.  Review on thermal performance of phase change energy storage building envelope , 2009 .

[14]  R. Velraj,et al.  Review on free cooling of buildings using phase change materials , 2010 .

[15]  Daniel R. Lynch,et al.  Unified approach to simulation on deforming elements with application to phase change problems , 1982 .

[16]  Dong Li,et al.  Numerical analysis on thermal performance of roof contained PCM of a single residential building , 2015 .

[17]  Halime Paksoy,et al.  Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials , 2015 .

[18]  Selçuk Kutluay,et al.  A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method , 2004, Appl. Math. Comput..

[19]  Mario A. Storti,et al.  Numerical methods in phase-change problems , 1994 .

[20]  Alparslan Oztekin,et al.  Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage , 2015 .

[21]  Rasmus Lund Jensen,et al.  A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM , 2014 .

[22]  Kai Sirén,et al.  Analytical model for melting in a semi-infinite PCM storage with an internal fin , 2003 .

[23]  Sheikh Ahmad Zaki,et al.  A review on phase change material (PCM) for sustainable passive cooling in building envelopes , 2016 .

[24]  Aaron R. Sakulich,et al.  Incorporation of Phase Change Materials in Cementitious Systems via Fine Lightweight Aggregate , 2012 .

[25]  Neven Ukrainczyk,et al.  Thermophysical Comparison of Five Commercial Paraffin Waxes as Latent Heat Storage Materials , 2010 .

[26]  Vaughan R Voller,et al.  Towards a general numerical scheme for solidification systems , 1997 .

[27]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[28]  Zongjin Li,et al.  Development of thermal energy storage concrete , 2004 .

[29]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[30]  Roland W. Lewis,et al.  A finite element enthalpy technique for solving coupled nonlinear heat conduction/mass diffusion problems with phase change , 1995 .

[31]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[32]  Feng Xing,et al.  Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels , 2014 .

[33]  Xing Ju,et al.  Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review , 2018 .

[34]  Alberto Cardona,et al.  A fast convergent and accurate temperature model for phase‐change heat conduction , 1999 .

[35]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[36]  Arpad Horvath,et al.  Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20% , 2016 .

[38]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[39]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[40]  Antonio Fasano,et al.  Numerical solution of phase-change problems , 1973 .

[41]  Bjørn Petter Jelle,et al.  Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities , 2015 .

[42]  H. Paksoy,et al.  Review on using microencapsulated phase change materials (PCM) in building applications , 2015 .

[43]  Zhonghao Rao,et al.  Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate , 2012 .

[44]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[45]  Jay G. Sanjayan,et al.  A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites , 2015 .

[46]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[47]  Miroslaw Zukowski,et al.  Mathematical modeling and numerical simulation of a short term thermal energy storage system using phase change material for heating applications , 2007 .

[48]  Laurent Pilon,et al.  Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials , 2017 .

[49]  V. Voller,et al.  An analytical solution for a Stefan problem with variable latent heat , 2004 .

[50]  R. Velraj,et al.  Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management , 2008 .

[51]  Zhiqiang Zhai,et al.  Numerical modeling of thermal behaviors of active multi-layer living wall , 2015 .

[52]  D. Feldman,et al.  The stability of phase change materials in concrete , 1992 .

[53]  G. Fang,et al.  An overview of thermal energy storage systems , 2018 .

[54]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[55]  Martin Koller,et al.  Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer , 2016 .

[56]  Vaughan R Voller,et al.  Implicit Finite—difference Solutions of the Enthalpy Formulation of Stefan Problems , 1985 .

[57]  R. L. Sawhney,et al.  Solar water heaters with phase change material thermal energy storage medium: A review , 2009 .

[58]  M. Cross,et al.  Accurate solutions of moving boundary problems using the enthalpy method , 1981 .

[59]  S. D. Pohekar,et al.  Performance enhancement in latent heat thermal storage system: A review , 2009 .

[60]  D. James,et al.  Performance analysis of incorporating phase change materials in asphalt concrete pavements , 2018 .

[61]  H. Brouwers,et al.  Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses , 2011 .

[62]  Xiangfei Kong,et al.  Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building , 2018 .

[63]  Jean-Pierre Bédécarrats,et al.  Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling , 2015 .

[64]  Luisa F. Cabeza,et al.  Experimental study of using PCM in brick constructive solutions for passive cooling , 2010 .

[65]  A. Caggiano,et al.  Thermodynamically consistent multiscale formulation of a thermo-mechanical problem with phase transformations , 2018, Continuum Mechanics and Thermodynamics.

[66]  Zhiqiang Zhai,et al.  A new validated TRNSYS module for simulating latent heat storage walls , 2015 .

[67]  Luigi Marletta,et al.  A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings , 2013 .

[68]  Brian G. Thomas,et al.  Fixed grid techniques for phase change problems: A review , 1990 .

[69]  H. Brouwers,et al.  The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials , 2009 .

[70]  Parham A. Mirzaei,et al.  Modeling of phase change materials for applications in whole building simulation , 2012 .

[71]  Carsten Rode,et al.  The international building physics toolbox in Simulink , 2007 .

[72]  Joseph Virgone,et al.  Numerical modeling and experimental validation of a PCM to air heat exchanger , 2013 .

[73]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[74]  A. Arora,et al.  Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements , 2017 .

[75]  Frédéric Kuznik,et al.  A review on phase change materials integrated in building walls , 2011 .

[76]  Mohamed Khayet,et al.  Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane , 2015 .

[77]  Helmut J. Böhm,et al.  Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions , 2008 .

[78]  D. Bentz,et al.  Potential applications of phase change materials in concrete technology , 2007 .

[79]  B. Zivkovic,et al.  An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers , 2001 .

[80]  Shiming Deng,et al.  Review on building energy performance improvement using phase change materials , 2018 .

[81]  R. Velraj,et al.  Effect of double layer phase change material in building roof for year round thermal management , 2008 .

[82]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[83]  Laurent Pilon,et al.  Figure of merit for the thermal performance of cementitious composites containing phase change materials , 2016 .

[84]  Zhiqiang Zhai,et al.  Systematic evaluation of mathematical methods and numerical schemes for modeling PCM-enhanced building enclosure , 2015 .

[85]  B. Nedjar,et al.  An enthalpy-based finite element method for nonlinear heat problems involving phase change , 2002 .

[86]  Francesco Fiorito,et al.  A numerical study on the thermal performance of night ventilated hollow core slabs cast with micro-encapsulated PCM concrete , 2016 .

[87]  Martin Schneider,et al.  Sustainable cement production—present and future , 2011 .

[88]  Dariusz Heim,et al.  Isothermal storage of solar energy in building construction , 2010 .

[89]  Carlos Salas-Bringas,et al.  Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications , 2017 .

[90]  M. Hadjieva,et al.  Composite salt-hydrate concrete system for building energy storage , 2000 .

[91]  Farah Souayfane,et al.  Phase change materials (PCM) for cooling applications in buildings: A review , 2016 .

[92]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[93]  G. Sant,et al.  A general method for retrieving thermal deformation properties of microencapsulated phase change materials or other particulate inclusions in cementitious composites , 2017 .

[94]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[95]  Pingfang Hu,et al.  A simplified dynamic model of double layers shape-stabilized phase change materials wallboards , 2013 .

[96]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[97]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[98]  Tanmay Basak,et al.  A fixed-grid finite element based enthalpy formulation for generalized phase change problems: role of superficial mushy region , 2002 .

[99]  Paulo Santos,et al.  Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency , 2013 .

[100]  Sushil Kumar,et al.  Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model , 2017, Comput. Biol. Medicine.

[101]  Xin Wang,et al.  A new method to determine thermophysical properties of PCM-concrete brick , 2013 .

[102]  Luigi Marletta,et al.  Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings , 2014 .

[103]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[104]  D. Hartree,et al.  The calculation of variable heat flow in solids , 1946, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[105]  G. Sant,et al.  On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials , 2014 .

[106]  G. Sant,et al.  Diurnal thermal analysis of microencapsulated PCM-concrete composite walls , 2015 .

[107]  Tarik Kousksou,et al.  Thermal behavior of building material containing microencapsulated PCM , 2012 .

[108]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[109]  G. Fang,et al.  Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage , 2018 .

[110]  M. Cross,et al.  An enthalpy method for convection/diffusion phase change , 1987 .

[111]  Piia Lamberg,et al.  Approximate analytical model for two-phase solidification problem in a finned phase-change material storage , 2004 .

[112]  Shuli Liu,et al.  A review on the air-PCM-TES application for free cooling and heating in the buildings , 2016 .

[113]  X. Yu,et al.  An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses , 2018, Renewable Energy.

[114]  Sabine Caré,et al.  Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs) , 2014 .

[115]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[116]  G. Sant,et al.  Effective thermal conductivity of three-component composites containing spherical capsules , 2014 .

[117]  Nasrudin Abd Rahim,et al.  Review of PCM based cooling technologies for buildings , 2012 .

[118]  F. Talati,et al.  Numerical Solution of Heat Transfer Process in PCM Storage Using Tau Method , 2015 .

[119]  Daniel R. Lynch,et al.  Continuously deforming finite elements for the solution of parabolic problems, with and without phase change , 1981 .

[120]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[121]  Pingfang Hu,et al.  Energy saving potential of a novel phase change material wallboard in typical climate regions of China , 2016 .

[122]  D. Feldman,et al.  Latent heat storage in concrete , 1989 .

[123]  B. Šavija,et al.  Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: Theoretical considerations , 2016 .

[124]  Angela Sasic Kalagasidis,et al.  A multi-level modelling and evaluation of thermal performance of phase change materials in buildings , 2014 .

[125]  S. Argyropoulos,et al.  Mathematical modelling of solidification and melting: a review , 1996 .

[126]  Sunil Kumar Singal,et al.  Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material , 2008 .

[127]  José Antonio Almendros-Ibáñez,et al.  A numerical study of external building walls containing phase change materials (PCM). , 2012 .

[128]  A. Kürklü Energy storage applications in greenhouses by means of phase change materials (PCMs): a review , 1998 .

[129]  D. Feldman,et al.  Development and application of organic phase change mixtures in thermal storage gypsum wallboard , 1995 .

[130]  C. Poon,et al.  Use of phase change materials for thermal energy storage in concrete: An overview , 2013 .

[131]  Na Zhu,et al.  Dynamic characteristics and energy performance of buildings using phase change materials: A review , 2009 .

[132]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[133]  R. Velraj,et al.  Phase change material-based building architecture for thermal management in residential and commercial establishments , 2008 .

[134]  Alex Ricklefs,et al.  Thermal Conductivity of Cementitious Composites Containing Microencapsulated Phase Change Materials , 2017 .

[135]  Javier Neila,et al.  Applications of Phase Change Material in highly energy-efficient houses , 2012 .

[136]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[137]  Per Heiselberg,et al.  Review of thermal energy storage technologies based on PCM application in buildings , 2013 .

[138]  Ahmed Loukili,et al.  Multiscale modelling for the thermal creep analysis of PCM concrete , 2016 .

[139]  Khamid Mahkamov,et al.  Passive thermal control in residential buildings using phase change materials , 2016 .

[140]  Poul Alberg Østergaard,et al.  Active and passive cooling methods for dwellings: A review , 2018 .

[141]  Tapas K. Mallick,et al.  Review of latent heat thermal energy storage for improved material stability and effective load management , 2018 .

[142]  Changzhong Chen,et al.  Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage , 2018 .

[143]  S. M. Sadrameli,et al.  Simulation of energy storage system with phase change material (PCM) , 2012 .

[144]  S. P. Singh,et al.  Performance evaluation of dual phase change material gypsum board for the reduction of temperature swings in a building prototype in composite climate , 2018 .

[145]  Esam M. Alawadhi,et al.  Concrete roof with cylindrical holes containing PCM to reduce the heat gain , 2013 .

[146]  Jan Vorel,et al.  Mori-Tanaka Based Estimates of Effective Thermal Conductivity of Various Engineering Materials , 2011, Micromachines.

[147]  Pramod B. Salunkhe,et al.  A review on effect of phase change material encapsulation on the thermal performance of a system , 2012 .

[148]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[149]  F. Kuznik,et al.  Interpretation of calorimetry experiments to characterise phase change materials , 2014 .

[150]  Laurent Pilon,et al.  Reduced-scale experiments to evaluate performance of composite building envelopes containing phase change materials , 2018 .

[151]  Vaughan R Voller,et al.  ON THE ENTHALPY METHOD , 1993 .

[152]  G. Sant,et al.  Influence of Microencapsulated Phase Change Material ( PCM ) Characteristics on the Microstructure and Strength of Cementitious Composites : Experiments and Finite Element Simulations , 2022 .

[153]  J. D. Felske,et al.  EFFECTIVE THERMAL CONDUCTIVITY OF COMPOSITE SPHERES IN A CONTINUOUS MEDIUM WITH CONTACT RESISTANCE , 2004 .

[154]  N. Ukrainczyk,et al.  Thermal energy storage characterization of cement-based systems containing microencapsulated-PCMs , 2019, Construction and Building Materials.

[155]  V. Vinayaka Ram,et al.  PCM-mortar based construction materials for energy efficient buildings: A review on research trends , 2018 .

[156]  S. Kalaiselvam,et al.  Sustainable thermal energy storage technologies for buildings: A review , 2012 .

[157]  Joseph Andrew Clarke,et al.  Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r , 2004 .

[158]  Xiangfei Kong,et al.  Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application , 2014 .

[159]  Early-age shrinkage and temperature optimization for cement paste by using PCM and MgO based on FBG sensing technique , 2016 .

[160]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[161]  Nasrudin Abd Rahim,et al.  Novel approaches and recent developments on potential applications of phase change materials in solar energy , 2018 .

[162]  Esam M. Alawadhi,et al.  Phase change process with free convection in a circular enclosure: numerical simulations , 2004 .

[163]  L. Pires,et al.  Transient behaviour of a latent-heat thermal-energy store: numerical and experimental studies , 2002 .

[164]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[165]  R. Lehtiniemi,et al.  Numerical and experimental investigation of melting and freezing processes in phase change material storage , 2004 .

[166]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[167]  Miguel Azenha,et al.  Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings , 2016 .

[168]  Guohui Gan,et al.  Critical review of latent heat storage systems for free cooling in buildings , 2018 .

[169]  E. M. Alawadhi,et al.  Thermal Analysis of a Pipe Insulation with a Phase Change Material: Material Selection and Sizing , 2008 .

[170]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[171]  Mario A. Medina,et al.  Proposed Modifications for Models of Heat Transfer Problems Involving Partially Melted Phase Change Processes , 2009 .

[172]  Shazim Ali Memon,et al.  Phase change materials integrated in building walls: A state of the art review , 2014 .

[173]  Hongfa Di,et al.  Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook , 2007 .

[174]  Luisa F. Cabeza,et al.  An approach to the simulation of PCMs in building applications using TRNSYS , 2005 .

[175]  Yacine Rezgui,et al.  Generations of knowledge management in the architecture, engineering and construction industry: An evolutionary perspective , 2010, Adv. Eng. Informatics.

[176]  Luisa F. Cabeza,et al.  Review on phase change materials (PCMs) for cold thermal energy storage applications , 2012 .

[177]  Vaughan R Voller,et al.  An implicit enthalpy solution for phase change problems: with application to a binary alloy solidification , 1987 .

[178]  Miguel Nepomuceno,et al.  Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate , 2014 .

[179]  D. Mazzeo,et al.  Parametric study and approximation of the exact analytical solution of the Stefan problem in a finite PCM layer in a steady periodic regime , 2017 .

[180]  S. C. Kaushik,et al.  DEVELOPMENT OF PHASE CHANGE MATERIALS BASED MICROENCAPSULATED TECHNOLOGY FOR BUILDINGS: A REVIEW , 2011 .