Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity.

[1]  Nicolas Joly,et al.  Modus operandi of the bacterial RNA polymerase containing the σ54 promoter‐specificity factor , 2008, Molecular microbiology.

[2]  D. Kahn,et al.  Genetic regulation of biological nitrogen fixation , 2004, Nature Reviews Microbiology.

[3]  R. Dixon,et al.  Role of the amino‐terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL , 2004, Molecular microbiology.

[4]  Philip E. Johnson,et al.  The NifL-NifA System: a Multidomain Transcriptional Regulatory Complex That Integrates Environmental Signals , 2004, Journal of bacteriology.

[5]  R. Dixon,et al.  The Amino-terminal GAF Domain of Azotobacter vinelandii NifA Binds 2-Oxoglutarate to Resist Inhibition by NifL under Nitrogen-limiting Conditions* , 2003, Journal of Biological Chemistry.

[6]  R. Schmitz,et al.  Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool. , 2003, European Journal of Biochemistry.

[7]  E. D. de Souza,et al.  Fnr Is Involved in Oxygen Control of Herbaspirillum seropedicae N-Truncated NifA Protein Activity in Escherichia coli , 2003, Applied and Environmental Microbiology.

[8]  F. Pedrosa,et al.  Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein. , 2003, Protein expression and purification.

[9]  Dietmar E. Martin,et al.  Identification of a NifL-like protein in a diazotroph of the beta-subgroup of the Proteobacteria, Azoarcus sp. strain BH72. , 2002, Microbiology.

[10]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[11]  F. Pedrosa,et al.  In-trans regulation of the N-truncated-NIFA protein of Herbaspirillum seropedicae by the N-terminal domain. , 1999, FEMS microbiology letters.

[12]  F. Pedrosa,et al.  Expression and functional analysis of an N‐truncated NifA protein of Herbaspirillum seropedicae , 1999, FEBS letters.

[13]  M. Drummond,et al.  Control of Herbaspirillum seropedicaeNifA Activity by Ammonium Ions and Oxygen , 1999, Journal of bacteriology.

[14]  R. Dixon,et al.  Oxygen sensitivity and metal ion-dependent transcriptional activation by NIFA protein from Rhizobium leguminosarum biovar trifolii , 1994, Molecular and General Genetics MGG.

[15]  H. Fischer Genetic regulation of nitrogen fixation in rhizobia. , 1994, Microbiological reviews.

[16]  L. Segovia,et al.  The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains , 1993, Journal of bacteriology.

[17]  W. Klipp,et al.  A defined amino acid exchange close to he putative nucleotide binding site is responsible for an oxygen-tolerant variant of the Rhizobium meliloti NifA protein , 1992, Molecular and General Genetics MGG.

[18]  F. Pedrosa,et al.  Sequence and structural organization of a nif A-like gene and part of a nifB-like gene of Herbaspirillum seropedicae strain Z78. , 1991, Journal of general microbiology.

[19]  E. Morett,et al.  Influence of oxygen on DNA binding, positive control, and stability of the Bradyrhizobium japonicum NifA regulatory protein , 1991, Journal of bacteriology.

[20]  F. Ausubel,et al.  Aerobic inactivation of Rhizobium meliloti NifA in Escherichia coli is mediated by lon and two newly identified genes, snoB and snoC , 1991, Journal of bacteriology.

[21]  G. Sarkar,et al.  The "megaprimer" method of site-directed mutagenesis. , 1990, BioTechniques.

[22]  H. Hennecke,et al.  Critical spacing between two essential cysteine residues in the interdomain linker of the Bradyrhizobium japonicum NifA protein , 1989, FEBS letters.

[23]  F. Ausubel,et al.  The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter , 1989, Journal of bacteriology.

[24]  H. Hennecke,et al.  Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. , 1988, Nucleic acids research.

[25]  M. Merrick,et al.  Over-production and characterization of the nifA gene product of Klebsiella pneumoniae--the transcriptional activator of nif gene expression. , 1988, Journal of general microbiology.

[26]  J. Beynon,et al.  Expression and functional analysis of the Rhizobium meliloti nifA gene , 1988, The EMBO journal.

[27]  D. Macneil,et al.  Fine-structure deletion map and complementation analysis of the glnA-glnL-glnG region in Escherichia coli , 1982, Journal of bacteriology.

[28]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[29]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[30]  Jeffrey H. Miller,et al.  A short course in bacterial genetics , 1992 .

[31]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[32]  S. Primrose,et al.  Chromosomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. , 1974, Journal of general microbiology.