Queuing Over Ever-Changing Communication Scenarios in Tactical Networks

This paper introduces a hierarchy of queues complementing each other to handle ever-changing communication scenarios in tactical networks. The first queue stores the QoS-constrained messages from command and control systems. These messages are fragmented into IP packets, which are stored in a queue of packets (second) to be sent to the radio buffer (third), which is a queue with limited space therefore, open to overflow. We start with the hypothesis that these three queues can handle ever-changing user(s) data flows (problem <inline-formula><tex-math notation="LaTeX">$A$</tex-math><alternatives><mml:math><mml:mi>A</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq1-3005737.gif"/></alternatives></inline-formula>) through ever-changing network conditions (problem <inline-formula><tex-math notation="LaTeX">$B$</tex-math><alternatives><mml:math><mml:mi>B</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq2-3005737.gif"/></alternatives></inline-formula>) using cross-layer information exchange, such as buffer occupancy, data rate, queue size and latency (problem <inline-formula><tex-math notation="LaTeX">$A|B$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mo>|</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq3-3005737.gif"/></alternatives></inline-formula>). We introduce two stochastic models to create sequences of QoS-constrained messages (<inline-formula><tex-math notation="LaTeX">$A$</tex-math><alternatives><mml:math><mml:mi>A</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq4-3005737.gif"/></alternatives></inline-formula>) and to create ever-changing network conditions (<inline-formula><tex-math notation="LaTeX">$B$</tex-math><alternatives><mml:math><mml:mi>B</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq5-3005737.gif"/></alternatives></inline-formula>). In sequence, we sketch a control loop to shape <inline-formula><tex-math notation="LaTeX">$A$</tex-math><alternatives><mml:math><mml:mi>A</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq6-3005737.gif"/></alternatives></inline-formula> to <inline-formula><tex-math notation="LaTeX">$B\;$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>B</mml:mi><mml:mspace width="0.277778em"/></mml:mrow></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq7-3005737.gif"/></alternatives></inline-formula> to test our hypothesis using model <inline-formula><tex-math notation="LaTeX">$A|B$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mo>|</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq8-3005737.gif"/></alternatives></inline-formula>, which defines enforcement points at the incoming/outgoing chains of the system together with a control plane. Then, we discuss experimental results in a network with VHF radios using data flows that overflows the radio buffer over ever-changing data rate patterns. We discuss quantitative results showing the performance and limitations of our solutions for problems <inline-formula><tex-math notation="LaTeX">$A$</tex-math><alternatives><mml:math><mml:mi>A</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq9-3005737.gif"/></alternatives></inline-formula>, <inline-formula><tex-math notation="LaTeX">$B$</tex-math><alternatives><mml:math><mml:mi>B</mml:mi></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq10-3005737.gif"/></alternatives></inline-formula>, and <inline-formula><tex-math notation="LaTeX">$A|B$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mo>|</mml:mo><mml:mi>B</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="rigolinferreiralopes-ieq11-3005737.gif"/></alternatives></inline-formula>.

[1]  Frank T. Johnsen,et al.  Using web services to realize service oriented architecture in military communication networks , 2007, IEEE Communications Magazine.

[2]  Joseph P. Macker,et al.  Robust communications for disconnected, intermittent, low-bandwidth (DIL) environments , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[3]  Mauro Tortonesi,et al.  Experimental Evaluation of Group Communications Protocols for Data Dissemination at the Tactical Edge , 2019, 2019 International Conference on Military Communications and Information Systems (ICMCIS).

[4]  Niranjan Suri,et al.  A content and context-aware solution for network state exchange in tactical networks , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[5]  Przemyslaw Berezinski,et al.  Standard tactical services in a military disruption-tolerant network: Field tests , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[6]  Lin Guan,et al.  Adaptive Intelligent Middleware Architecture for Mobile Real-Time Communications , 2016, IEEE Transactions on Mobile Computing.

[7]  Joseph B. Evans,et al.  TIGR: the tactical ground reporting system , 2013, IEEE Communications Magazine.

[8]  George F. Elmasry A comparative review of commercial vs. tactical wireless networks , 2010, IEEE Communications Magazine.

[9]  Anders Hansson,et al.  The angloval tactical military scenario and experimentation environment , 2018, 2018 International Conference on Military Communications and Information Systems (ICMCIS).

[10]  Peter Sevenich,et al.  Creating and Handling Ever-changing Communication Scenarios in Tactical Networks , 2019, 2019 15th International Conference on the Design of Reliable Communication Networks (DRCN).

[11]  Chadi Assi,et al.  Disruption-Tolerant Networking: A Comprehensive Survey on Recent Developments and Persisting Challenges , 2012, IEEE Communications Surveys & Tutorials.

[12]  Meenu Chawla,et al.  Survey of buffer management policies for delay tolerant networks , 2014 .

[13]  Jo Erskine Hannay Architectural work for modeling and simulation combining the NATO Architecture Framework and C3 Taxonomy , 2017 .

[14]  Roberto Rigolin F. Lopes,et al.  Realizing overlay Xcast in a tactical service infrastructure: An approach based on a service-oriented architecture , 2018, 2018 International Conference on Military Communications and Information Systems (ICMCIS).

[15]  Niranjan Suri,et al.  State Estimation for Tactical Networks: Challenges and Approaches , 2018, MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM).

[16]  Cesare Stefanelli,et al.  DDAM: Dynamic network condition detection and communication adaptation in Tactical Edge Networks , 2016, MILCOM 2016 - 2016 IEEE Military Communications Conference.

[17]  Frank Trethan Johnsen,et al.  SOA and Wireless Mobile Networks in the tactical domain: Results from experiments , 2015, MILCOM 2015 - 2015 IEEE Military Communications Conference.

[18]  Jean-Frédéric Wagen,et al.  TAKE — Tactical ad-hoc network emulation , 2018, 2018 International Conference on Military Communications and Information Systems (ICMCIS).

[19]  Frank T. Johnsen,et al.  Robust web services in heterogeneous military networks , 2010, IEEE Communications Magazine.

[20]  C. Jason Chiang,et al.  QoS-aware Adaptive Middleware (QAM) for tactical MANET applications , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[21]  Norman Jansen,et al.  A queuing mechanism for delivering QoS-constrained web services in tactical networks , 2018, 2018 International Conference on Military Communications and Information Systems (ICMCIS).