Flux Density and Air Gap Effects on Rotor Power Loss Measurements in Planar Radial Magnetic Bearings

The rotor power losses in magnetic bearings are due to eddy currents, hysteresis, and windage. The influence of air gap magnetic flux density and air gap thickness is not well understood at this time. This paper presents measured results in two magnetic bearing radial configurations with a laminated rotor. The rotor power losses were evaluated by measuring the rundown speed of the rotor, in air, after the rotor was spun up to speeds of approximately 30,000 rpm in atmospheric air. The kinetic energy of the rotor is converted to heat by magnetic and air drag power loss mechanisms during the run down. A method of separating the hysteresis, eddy current and windage losses is presented. Eddy current effects were found to be the most important loss mechanism in the data analysis. Hysteresis and windage effects did not change much from one configuration to the other. The measured rotor power loss increased significantly as the magnetic flux density increased and also increased significantly as the air gap thickness decreased.Copyright © 1997 by ASME