An Improved Implementation Approach for Quantum Phase Estimation on Quantum Computers

Quantum phase estimation (QPE) is one of the core algorithms for quantum computing. It has been extensively studied and applied in a variety of quantum applications such as the Shor's factoring algorithm, quantum sampling algorithms and the calculation of the eigenvalues of unitary matrices. The QPE algorithm has been combined with Kitaev's algorithm and the inverse quantum Fourier transform (IQFT) which are utilized as a fundamental component of such quantum algorithms. In this paper, we explore the computational challenges of implementing QPE algorithms on noisy intermediate-scale quantum (NISQ) machines using the IBM Q Experience (e.g., the IBMQX4, 5-qubit quantum computing hardware platform). Our experimental results indicate that the accuracy of finding the phase using these QPE algorithms is severely constrained by the NISQ computer's physical characteristics such as coherence time and error rates. To mitigate these physical limitations, we propose implementing a modified solution by reducing the number of controlled rotation gates and phase shift operations, thereby increasing the accuracy of the finding phase in near-term quantum computers.

[1]  Maris Ozols,et al.  Quantum rejection sampling , 2011, ITCS '12.

[2]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[3]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[4]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[5]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[6]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[7]  N. Vitanov,et al.  Design of quantum Fourier transforms and quantum algorithms by using circulant Hamiltonians , 2009, 0910.1023.

[8]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[9]  Chen-Fu Chiang,et al.  Quantum phase estimation with arbitrary constant-precision phase shift operators , 2010, Quantum Inf. Comput..

[10]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[12]  G. J. Milburn,et al.  Generation of eigenstates using the phase-estimation algorithm , 2001 .

[13]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[14]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[15]  Jiangfeng Du,et al.  Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. , 2012, Physical review letters.

[16]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[19]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[20]  Göran Wendin,et al.  Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark , 2006, quant-ph/0610214.

[21]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[22]  C. J. O'Loan Topics in estimation of quantum channels , 2010, 1001.3971.

[23]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[24]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[25]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[26]  Dieter Suter,et al.  Quantum adiabatic algorithm for factorization and its experimental implementation. , 2008, Physical review letters.

[27]  Jaehyun Kim,et al.  Implementation of phase estimation and quantum counting algorithms on an NMR quantum-information processor , 2002 .

[28]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..