Fossil Evidence on Origin of the Mammalian Brain

Evidence from two early fossils suggests that brain enlargement and specialization proceeded in three pulses. Many hypotheses have been postulated regarding the early evolution of the mammalian brain. Here, x-ray tomography of the Early Jurassic mammaliaforms Morganucodon and Hadrocodium sheds light on this history. We found that relative brain size expanded to mammalian levels, with enlarged olfactory bulbs, neocortex, olfactory (pyriform) cortex, and cerebellum, in two evolutionary pulses. The initial pulse was probably driven by increased resolution in olfaction and improvements in tactile sensitivity (from body hair) and neuromuscular coordination. A second pulse of olfactory enhancement then enlarged the brain to mammalian levels. The origin of crown Mammalia saw a third pulse of olfactory enhancement, with ossified ethmoid turbinals supporting an expansive olfactory epithelium in the nasal cavity, allowing full expression of a huge odorant receptor genome.

[1]  T. Rowe,et al.  DIGITAL CRANIAL ENDOCAST OF PUCADELPHYS ANDINUS, A PALEOCENE METATHERIAN , 2007 .

[2]  Zhe‐Xi Luo,et al.  Thrinaxodon: Digital atlas of the skull (CD-ROM) , 1995 .

[3]  W. J. Hillenius TURBINATES IN THERAPSIDS: EVIDENCE FOR LATE PERMIAN ORIGINS OF MAMMALIAN ENDOTHERMY , 1994, Evolution; international journal of organic evolution.

[4]  Zhe‐Xi Luo,et al.  Transformation and diversification in early mammal evolution , 2007, Nature.

[5]  Ian J. Corfe MAMMALS FROM THE AGE OF DINOSAURS—ORIGINS, EVOLUTION, AND STRUCTURE , 2007 .

[6]  U. Zeller The Lamina cribrosa of Ornithorhynchus (Monotremata, Mammalia) , 2004, Anatomy and Embryology.

[7]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[8]  M. Novacek THE BRAIN OF LEPTICTIS DAKOTENSIS, AN OLIGOCENE LEPTICTID (EUTHERIA: MAMMALIA) , 1982 .

[9]  Z. Kielan-Jaworowska,et al.  A new reconstruction of multituberculate endocranial casts and encephalization quotient of Kryptobaatar , 2004 .

[10]  Carl Gans,et al.  Biology of the Reptilia , 1969 .

[11]  T. Rowe,et al.  Organization of the Olfactory and Respiratory Skeleton in the Nose of the Gray Short-Tailed Opossum Monodelphis domestica , 2005, Journal of Mammalian Evolution.

[12]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[13]  Timothy B. Rowe,et al.  Definition, diagnosis, and origin of Mammalia , 1988 .

[14]  T. Rowe,et al.  Cranial endocasts from a growth series of Monodelphis domestica (Didelphidae, Marsupialia): A study of individual and ontogenetic variation , 2007, Journal of morphology.

[15]  Z. Kielan-Jaworowska Multituberculate endocranial casts , 1983 .

[16]  Yoshihito Niimura,et al.  On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species , 2009, Genome biology and evolution.

[17]  T. Rowe,et al.  Description of a Cranial Endocast from the Fossil Mammal Vincelestes neuquenianus (Theriiformes) and its Relevance to the Evolution of Endocranial Characters in Therians , 2007, Anatomical record.

[18]  T. Rowe,et al.  The oldest platypus and its bearing on divergence timing of the platypus and echidna clades , 2008, Proceedings of the National Academy of Sciences.

[19]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[20]  Arnold G. Kluge,et al.  AMNIOTE PHYLOGENY AND THE IMPORTANCE OF FOSSILS , 1988, Cladistics : the international journal of the Willi Hennig Society.

[21]  John Gatesy,et al.  The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. , 2008, Systematic biology.

[22]  D. Watson XL.—The skull of Diademodon, with notes on those of some other Cynodonts , 1911 .

[23]  J. McKENDRICK,et al.  The Central Nervous System of Vertebrates , 1909, Nature.

[24]  K. Kermack,et al.  The lower jaw of Morganucodon , 1973 .

[25]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[26]  M. C. Brown J. Zelena Nerves and mechanoreceptors: The role of innervation in the , 1996, Neuroscience.

[27]  A. Crompton,et al.  A New Mammaliaform from the Early Jurassic and Evolution of Mammalian Characteristics , 2001, Science.

[28]  P. Jacobs,et al.  Applications of X-ray computed tomography in the geosciences , 2003, Geological Society, London, Special Publications.

[29]  Thomas Martin,et al.  Fossil evidence on evolution of inner ear cochlea in Jurassic mammals , 2011, Proceedings of the Royal Society B: Biological Sciences.

[30]  A. Crompton,et al.  Relationships of the Liassic Mammals Sinoconodon, Morganucodon oehleri, and Dinnetherium , 1993 .

[31]  Zhe‐Xi Luo,et al.  Analysis of Molar Structure and Phylogeny of Docodont Genera , 2007 .

[32]  C. Tyndale-Biscoe,et al.  The Developing Marsupial: Models for Biomedical Research , 1988 .

[33]  Zhe‐Xi Luo,et al.  A Late Jurassic Digging Mammal and Early Mammalian Diversification , 2005, Science.

[34]  Y. T. Loo The forebrain of the opossum, Didelphis virginiana. Part I. Gross anatomy , 1930 .

[35]  Quiroga Jc The brain of the mammal-like reptile Probainognathus jenseni (Therapsida, Cynodontia). A correlative paleo-neoneurological approach to the neocortex at the reptile-mammal transition. , 1980 .

[36]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[37]  T. Rowe Coevolution of the Mammalian Middle Ear and Neocortex , 1996, Science.

[38]  Cathleen L. May,et al.  A new carnivorous cynodont from the Ischigualasto Formation (Late Triassic, Argentina), with comments on eucynodont phylogeny , 1996 .

[39]  T. Rowe,et al.  Respiratory turbinates of canids and felids: a quantitative comparison , 2004 .

[40]  T. Rowe Phylogenetic Systematics and the Early History of Mammals , 1993 .

[41]  T. Kemp The Endocranial Cavity of a Nonmammalian Eucynodont, Chiniquodon theotenicus, and Its Implications for the Origin of the Mammalian Brain , 2009 .

[42]  T. Rowe,et al.  Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly , 2006, Journal of morphology.

[43]  Zhe‐Xi Luo,et al.  A Swimming Mammaliaform from the Middle Jurassic and Ecomorphological Diversification of Early Mammals , 2006, Science.

[44]  J. Lillegraven,et al.  Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the late Jurassic of Portugal and its implications to the evolution of mammalian characters , 1991 .

[45]  H. J. Jerison,et al.  Evolution of the Brain and Intelligence , 1973 .

[46]  Zhe‐Xi Luo,et al.  Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure , 2004 .

[47]  Kenneth A. Kermack,et al.  The skull of Morganucodon , 1981 .