Least Squares Residuals and Minimal Residual Methods
暂无分享,去创建一个
[1] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[2] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[3] Ilse C. F. Ipsen. Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.
[4] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[5] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[6] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[9] Homer F. Walker,et al. Implementations of the GMRES method , 1989 .
[10] Zdenek Strakos,et al. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..
[11] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[12] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[13] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[14] M. Rozložník,et al. Numerical stability of GMRES , 1995 .
[15] Christopher C. Paige,et al. Scaled total least squares fundamentals , 2002, Numerische Mathematik.
[16] Roger B. Sidje,et al. Alternatives for parallel Krylov subspace basis computation , 1997, Numer. Linear Algebra Appl..
[17] Jörg Liesen,et al. Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations , 1998 .
[18] Ilse C. F. Ipsen. A different approach to bounding the minimal residual norm in Krylov methods , 1998 .
[19] Ricardo D. Fierro,et al. The Total Least Squares Problem: Computational Aspects and Analysis (S. Van Huffel and J. Vandewalle) , 1993, SIAM Rev..
[20] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[21] G. Stewart. Collinearity and Least Squares Regression , 1987 .
[22] Sabine Van Huffel,et al. Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.
[23] M. Rozložník,et al. Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .
[24] O. Axelsson. A generalized conjugate gradient, least square method , 1987 .
[25] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[26] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .
[27] H. V. D. Vorst,et al. A comparison of some GMRES-like methods , 1992 .
[28] I. M. Khabaza. An Iterative Least-Square Method Suitable for Solving Large Sparse Matrices , 1963, Comput. J..
[29] Homer F. Walker,et al. A simpler GMRES , 1994, Numer. Linear Algebra Appl..
[30] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[31] E. Sturler. A PARALLEL VARIANT OF GMRES(m) , 1991 .