Thermal lens in magneto-active fluoride crystals

[1]  T. Graf,et al.  Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W. , 2018, Optics express.

[2]  Features of Thermally Induced Depolarization in Magneto-Active Media With Negative Optical Anisotropy Parameter , 2018, IEEE Journal of Quantum Electronics.

[3]  O. Palashov,et al.  Thermo-optical and magneto-optical characteristics of CeF 3 crystal , 2017 .

[4]  O. Palashov,et al.  Cryogenically cooled CeF3 crystal as media for high-power magneto-optical devices. , 2017, Optics letters.

[5]  A. Jalali,et al.  Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications. , 2017, Optics letters.

[6]  Ryo Yasuhara,et al.  Faraday rotator based on TSAG crystal with <001> orientation. , 2016, Optics express.

[7]  K. Stevens,et al.  Promising Materials for High Power Laser Isolators , 2016 .

[8]  O. Palashov,et al.  Investigation of thermo-optical characteristics of magneto-active crystal Na(0.37)Tb(0.63)F(2.26). , 2015, Optics letters.

[9]  G. Plaza,et al.  Ultraviolet-visible optical isolators based on CeF3 Faraday rotator , 2015 .

[10]  I. A. Ivanov,et al.  Growth and magneto-optical properties of Na0.37Tb0.63F2.26 cubic single crystal , 2014 .

[11]  E. Khazanov,et al.  Terbium gallium garnet ceramic Faraday rotator for high-power laser application. , 2014, Optics letters.

[12]  N. Sorokin,et al.  Coloring elimination in Sr1 − xCexF2 + x crystals in the visible spectral range during growth from melt , 2013 .

[13]  Thermal lensing analysis of TGG and its effect on beam quality. , 2013, Optics express.

[14]  Y. Sugahara,et al.  UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3. , 2012, Optics express.

[15]  E. Khazanov,et al.  Drastic reduction of thermally induced depolarization in CaF₂ crystals with [111] orientation. , 2012, Optics express.

[16]  K Shimamura,et al.  CeF3 and PrF3 as UV-visible Faraday rotators. , 2011, Optics express.

[17]  Torsten Langer,et al.  Faraday isolators for high average power fundamental mode radiation , 2010, LASE.

[18]  I. Kozhevatov,et al.  Optical interference methods of subwavelength-resolution imaging , 2009 .

[19]  F. Balembois,et al.  On thermal effects in solid state lasers: the case of ytterbium-doped materials , 2007, 0704.0701.

[20]  E. Khazanov,et al.  LASER BEAMS: Calculation of the laser-beam M2 factor by the method of moments , 2005 .

[21]  Efim A. Khazanov,et al.  Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal , 2003, SPIE LASE.

[22]  D. Karimov,et al.  Peculiarities of the growth of disordered Na, R-fluorite (R=Y, Ce–Lu) single crystals , 2002 .

[23]  W. A. Clarkson,et al.  Thermal effects and their mitigation in end-pumped solid-state lasers , 2001 .

[24]  Peter Reiche,et al.  Terbium scandium aluminum garnet: a new efficient material for Faraday rotators? , 1997, Other Conferences.

[25]  C Joenathan,et al.  Phase-measuring interferometry: new methods and error analysis. , 1994, Applied optics.

[26]  Norman P. Barnes,et al.  Variation of the Verdet constant with temperature of terbium gallium garnet , 1992 .

[27]  A. I. Stepanov,et al.  Thermooptics of solid-state lasers , 1987 .

[28]  W. Koechner,et al.  Thermal Lensing in a Nd:YAG Laser Rod. , 1970, Applied optics.