An extension of Kedlaya's algorithm for hyperelliptic curves
暂无分享,去创建一个
[1] Peter Stevenhagen,et al. Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography , 2011 .
[2] Paul Monsky,et al. Formal Cohomology: III. Fixed Point Theorems , 1971 .
[3] R. Lercier,et al. A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .
[4] K. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.
[5] Hendrik Hubrechts,et al. Point Counting in Families of Hyperelliptic Curves , 2006, Found. Comput. Math..
[6] Wouter Castryck,et al. Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..
[7] R. Carls,et al. A p-adic quasi-quadratic point counting algorithm , 2007, 0706.0234.
[8] Kiran S. Kedlaya,et al. Computing Zeta Functions via p-Adic Cohomology , 2004, ANTS.
[9] Ralf Gerkmann,et al. Relative Rigid Cohomology and Deformation of Hypersurfaces , 2010 .
[10] Bas Edixhoven,et al. Point counting after Kedlaya, EIDMA-Stieltjes Graduate course, Leiden, September 22-26, 2003 , 2006 .
[11] Robert Carls. Canonical coordinates on the canonical lift , 2005 .
[12] Theo van den Bogaart. About the choice of a basis in Kedlaya's algorithm , 2008, 0809.1243.
[13] Paul Monsky,et al. Formal Cohomology: I , 1968 .
[14] Chrystel Brandenburgh,et al. Leiden , 2008 .
[15] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[16] Paul Monsky,et al. Formal Cohomology: II. The Cohomology Sequence of a Pair , 1968 .
[17] Frederik Vercauteren,et al. Counting points on Cab curves using Monsky-Washnitzer cohomology , 2006, Finite Fields Their Appl..
[18] Alan G. B. Lauder,et al. Counting points on varieties over finite fields of small characteristic , 2006, math/0612147.
[19] Frederik Vercauteren,et al. An Extension of Kedlaya's Algorithm to Hyperelliptic Curves in Characteristic 2 , 2004, Journal of Cryptology.