A study of atomic iodine and molecular thallium iodide by X-ray photoelectron and auger electron spectroscopy
暂无分享,去创建一个
[1] Kai Siegbahn,et al. Lifetime Broadening and CI-Resonances Observed in ESCA , 1976 .
[2] C. S. Ewig,et al. On the core binding energies of ions: The 3d levels of I - and Cs + , 1981 .
[3] D. C. Frost,et al. Free atom core binding energies from X‐ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg , 1978 .
[4] T. Thomas. Extra-atomic relaxation energies and the Auger parameter , 1980 .
[5] S. Aksela,et al. Semiempirical Solid State Shifts in the Auger-and Photoelectron Energies , 1982 .
[6] C. D. Wagner. Chemical shifts of Auger lines, and the Auger parameter , 1975 .
[7] C. D. Wagner,et al. X-ray excited Auger and photoelectron spectra of partially oxidized magnesium surfaces: The observation of abnormal chemical shifts , 1973 .
[8] C. S. Ewig,et al. Relativistic core binding energies of selected atoms: Comparison with experiment and other calculations , 1981 .
[9] P. Malmqvist,et al. Core and valence orbitals in solid and gaseous mercury by means of ESCA , 1976 .
[10] C. S. Ewig,et al. Accurate core binding energies of ions from Dirac-Fock calculations combined with experimental atomic binding energies , 1982 .
[11] S. Aksela,et al. Study of M4,5N4,5N4,5 auger energy shifts of Cs and I in free CsI molecules , 1983 .
[12] A. R. Slaughter,et al. A study of the 1s core region of atomic magnesium by X-ray photoelectron spectroscopy , 1982 .
[13] S. Aksela,et al. A cylindrical-mirror electron spectrometer for studies of gases and metal vapours , 1979 .
[14] D. A. Shirley. Theory of KLL Auger energies including static relaxation , 1973 .
[15] S. Aksela,et al. M/sub 4,5/N/sub 4,5/X Auger electron spectra of iodine and xenon Many-body effects , 1979 .
[16] B. Johansson,et al. Core level binding energy shifts between free and condensed atoms , 1979 .
[17] Richard L. Martin,et al. Halogen atomic and diatomic1shole states , 1977 .
[18] J. Desclaux. A multiconfiguration relativistic DIRAC-FOCK program , 1984 .
[19] U. Gelius. Binding Energies and Chemical Shifts in ESCA , 1974 .
[20] J. Connerade,et al. Continuous and discrete structure in the T1I absorption spectrum from 20 to 150 A associated with excitation of the 4f subshell , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[21] D. C. Frost,et al. Atomic and ionic core binding energies of selected levels in the alkaline earths from x‐ray photoelectron spectroscopy and Dirac–Fock calculations , 1982 .
[22] S. Aksela,et al. Study of L2,3 M4,5 M4,5 Auger spectra of Zn and Cu in molecular ZnCl2 and (CuCl)3 vapours , 1983 .
[23] T. Thomas,et al. Core ionization potentials in carbon monoxide , 1976 .
[24] H. Siegbahn,et al. Chemical Shifts of Auger Electron Lines and Electron Binding Energies in Free Molecules. Silicon Compounds , 1980 .
[25] T. Rantala,et al. Direct measurement of the kinetic energy shift between the molecular and atomic M 4.5 N 4.5 N 4.5 Auger spectra of iodine , 1979 .
[26] Nicholas Winograd,et al. Initial and final state effects in the ESCA spectra of cadmium and silver oxides , 1977 .
[27] L. Saethre,et al. Neon 1s ionization energy re-examined , 1984 .
[28] N. Mårtensson,et al. Core-level binding energies of solid thallium , 1980 .
[29] H. Siegbahn,et al. ESCA applied to high temperature molecular beams of bismuth and lead , 1973 .