A study of atomic iodine and molecular thallium iodide by X-ray photoelectron and auger electron spectroscopy

Abstract The I3d 5 2 binding energy has been measured in atomic iodine, thallium iodide and cesium iodide by high temperature gas-phase photoelectron spectrscopy using Al Kα (1486.6 eV) X-rays. The iodine M5N4,5N4,5 (1G4) Auger energies for TlI and CsI have also been measured and combined with binding energies to yield extra-atomic relaxation energies of 0.5 and O.3 eV, respectively, after corrections are applied to the Auger parameter. Charges were calculated using the simple potential model, which was also used to obtain an estimate of the atomic T14f 7 2 binding energy. Two other estimates of the atomic T14f 7 2 binding energy have also been calculated, both based on Dirac-Fock ΔSCF binding energies. The results of the three methods suggest a value of 125.3 ± 0.2 eV for T14f 7 2 .

[1]  Kai Siegbahn,et al.  Lifetime Broadening and CI-Resonances Observed in ESCA , 1976 .

[2]  C. S. Ewig,et al.  On the core binding energies of ions: The 3d levels of I - and Cs + , 1981 .

[3]  D. C. Frost,et al.  Free atom core binding energies from X‐ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg , 1978 .

[4]  T. Thomas Extra-atomic relaxation energies and the Auger parameter , 1980 .

[5]  S. Aksela,et al.  Semiempirical Solid State Shifts in the Auger-and Photoelectron Energies , 1982 .

[6]  C. D. Wagner Chemical shifts of Auger lines, and the Auger parameter , 1975 .

[7]  C. D. Wagner,et al.  X-ray excited Auger and photoelectron spectra of partially oxidized magnesium surfaces: The observation of abnormal chemical shifts , 1973 .

[8]  C. S. Ewig,et al.  Relativistic core binding energies of selected atoms: Comparison with experiment and other calculations , 1981 .

[9]  P. Malmqvist,et al.  Core and valence orbitals in solid and gaseous mercury by means of ESCA , 1976 .

[10]  C. S. Ewig,et al.  Accurate core binding energies of ions from Dirac-Fock calculations combined with experimental atomic binding energies , 1982 .

[11]  S. Aksela,et al.  Study of M4,5N4,5N4,5 auger energy shifts of Cs and I in free CsI molecules , 1983 .

[12]  A. R. Slaughter,et al.  A study of the 1s core region of atomic magnesium by X-ray photoelectron spectroscopy , 1982 .

[13]  S. Aksela,et al.  A cylindrical-mirror electron spectrometer for studies of gases and metal vapours , 1979 .

[14]  D. A. Shirley Theory of KLL Auger energies including static relaxation , 1973 .

[15]  S. Aksela,et al.  M/sub 4,5/N/sub 4,5/X Auger electron spectra of iodine and xenon Many-body effects , 1979 .

[16]  B. Johansson,et al.  Core level binding energy shifts between free and condensed atoms , 1979 .

[17]  Richard L. Martin,et al.  Halogen atomic and diatomic1shole states , 1977 .

[18]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[19]  U. Gelius Binding Energies and Chemical Shifts in ESCA , 1974 .

[20]  J. Connerade,et al.  Continuous and discrete structure in the T1I absorption spectrum from 20 to 150 A associated with excitation of the 4f subshell , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  D. C. Frost,et al.  Atomic and ionic core binding energies of selected levels in the alkaline earths from x‐ray photoelectron spectroscopy and Dirac–Fock calculations , 1982 .

[22]  S. Aksela,et al.  Study of L2,3 M4,5 M4,5 Auger spectra of Zn and Cu in molecular ZnCl2 and (CuCl)3 vapours , 1983 .

[23]  T. Thomas,et al.  Core ionization potentials in carbon monoxide , 1976 .

[24]  H. Siegbahn,et al.  Chemical Shifts of Auger Electron Lines and Electron Binding Energies in Free Molecules. Silicon Compounds , 1980 .

[25]  T. Rantala,et al.  Direct measurement of the kinetic energy shift between the molecular and atomic M 4.5 N 4.5 N 4.5 Auger spectra of iodine , 1979 .

[26]  Nicholas Winograd,et al.  Initial and final state effects in the ESCA spectra of cadmium and silver oxides , 1977 .

[27]  L. Saethre,et al.  Neon 1s ionization energy re-examined , 1984 .

[28]  N. Mårtensson,et al.  Core-level binding energies of solid thallium , 1980 .

[29]  H. Siegbahn,et al.  ESCA applied to high temperature molecular beams of bismuth and lead , 1973 .