Complementary use of cluster analysis and biplots to discover and validate patterns of gene expression in microarray data

Microarray studies are used in molecular biology to explore patterns of expression of thousands of genes. This methodology has relevantly developed in the last decades, and so has the need for appropriate methods for analyzing high-throughput data generated from such experiments.

[1]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[2]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[3]  Susmita Datta,et al.  Comparisons and validation of statistical clustering techniques for microarray gene expression data , 2003, Bioinform..

[4]  E. Lander Array of hope , 1999, Nature Genetics.

[5]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[6]  T. Rowlands,et al.  Cadherins and catenins in breast cancer. , 2005, Current opinion in cell biology.

[7]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Gabriel,et al.  The biplot graphic display of matrices with application to principal component analysis , 1971 .

[9]  Scott Chapman,et al.  Using biplots to interpret gene expression patterns in plants , 2002, Bioinform..

[10]  M Richard Simon,et al.  Design and Analysis of DNA Microarray Investigations , 2004 .

[11]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[12]  Jonathan M. Garibaldi,et al.  Cancer Profiles by Affinity Propagation , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[13]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[14]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[15]  Ron Shamir,et al.  EXPANDER – an integrative program suite for microarray data analysis , 2005, BMC Bioinformatics.

[16]  Gerhard Christofori,et al.  Cell adhesion and signalling by cadherins and Ig-CAMs in cancer , 2004, Nature Reviews Cancer.

[17]  S. Hellman,et al.  Separating favorable from unfavorable prognostic markers in breast cancer: the role of E-cadherin. , 2000, Cancer research.

[18]  D. Winter,et al.  Oestrogen and the colon: potential mechanisms for cancer prevention. , 2008, The Lancet. Oncology.

[19]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Bracken,et al.  E-cadherin Immunohistochemical Expression as a Prognostic Factor in Infiltrating Ductal Carcinoma of the Breast: a Systematic Review and Meta-Analysis , 2006, Breast Cancer Research and Treatment.

[21]  Stuart A. Aaronson,et al.  Exogenous Expression of N-Cadherin in Breast Cancer Cells Induces Cell Migration, Invasion, and Metastasis , 2000, The Journal of cell biology.