Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)

Tensor product state (TPS) based methods are powerful tools to efficiently simulate quantum many-body systems in and out of equilibrium. In particular, the one-dimensional matrix-product (MPS) formalism is by now an established tool in condensed matter theory and quantum chemistry. In these lecture notes, we combine a compact review of basic TPS concepts with the introduction of a versatile tensor library for Python (TeNPy) [this https URL]. As concrete examples, we consider the MPS based time-evolving block decimation and the density matrix renormalization group algorithm. Moreover, we provide a practical guide on how to implement abelian symmetries (e.g., a particle number conservation) to accelerate tensor operations.

[1]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[2]  U. Schollwock,et al.  Error estimates for extrapolations with matrix-product states , 2017, 1711.01104.

[3]  I. McCulloch Infinite size density matrix renormalization group, revisited , 2008, 0804.2509.

[4]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[5]  Frank Pollmann,et al.  Theory of finite-entanglement scaling at one-dimensional quantum critical points. , 2008, Physical review letters.

[6]  J. Ignacio Cirac,et al.  Efficient variational diagonalization of fully many-body localized Hamiltonians , 2015, 1506.07179.

[7]  Frank Pollmann,et al.  Time-evolving a matrix product state with long-ranged interactions , 2014, 1407.1832.

[8]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.

[9]  Sebastian Paeckel,et al.  Automated construction of $U(1)$-invariant matrix-product operators from graph representations , 2017, 1706.05338.

[10]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[11]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[12]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[13]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[14]  Axel Maas,et al.  On gauge fixing , 2010, 1010.5718.

[15]  I. McCulloch,et al.  The non-Abelian density matrix renormalization group algorithm , 2002 .

[16]  Frank Pollmann,et al.  Density matrix renormalization group on a cylinder in mixed real and momentum space , 2015, 1512.03318.

[17]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[18]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[19]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[20]  Daniel Gottesman,et al.  Entanglement versus gap for one-dimensional spin systems , 2009, 0901.1108.

[21]  F. Verstraete,et al.  Variational optimization algorithms for uniform matrix product states , 2017, 1701.07035.

[22]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[23]  M. B. Hastings,et al.  Light Cone Matrix Product , 2009, 0903.3253.

[24]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[25]  Dorit Aharonov,et al.  Entanglement vs. gap for one-dimensional spin systems , 2008 .

[26]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[27]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[28]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[29]  G Vidal Classical simulation of infinite-size quantum lattice systems in one spatial dimension. , 2007, Physical review letters.

[30]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[31]  Jakub Zakrzewski,et al.  Numerical computation of dynamically important excited states of many-body systems , 2011, 1106.4906.

[32]  M. Fannes,et al.  Quantum spin chains with quantum group symmetry , 1996 .

[33]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[34]  Andreas Weichselbaum,et al.  Non-abelian symmetries in tensor networks: A quantum symmetry space approach , 2012, 1202.5664.

[35]  A. Lefevre,et al.  Entanglement spectrum in one-dimensional systems , 2008, 0806.3059.

[36]  G. Ehlers,et al.  Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model , 2017, 1701.03690.

[37]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[38]  Simon Friederich,et al.  Functional renormalization for spontaneous symmetry breaking in the Hubbard model , 2010, 1012.5436.

[39]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[40]  Frank Pollmann,et al.  Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach. , 2015, Physical review letters.

[41]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[42]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[43]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[44]  Pang,et al.  Approximate diagonalization using the density matrix renormalization-group method: A two-dimensional-systems perspective. , 1994, Physical review. B, Condensed matter.

[45]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[46]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[47]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[48]  I. McCulloch,et al.  Strictly single-site DMRG algorithm with subspace expansion , 2015, 1501.05504.

[49]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[50]  Steven R. White,et al.  Real-space parallel density matrix renormalization group , 2013, 1301.3494.

[51]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[52]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[53]  F. Haldane Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model , 1983 .

[54]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[55]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[56]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[57]  Dave Bacon,et al.  Finite automata for caching in matrix product algorithms , 2007, 0708.1221.

[58]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[59]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[60]  S. White,et al.  Real-time evolution using the density matrix renormalization group. , 2004, Physical review letters.

[61]  Y. Nishio,et al.  Tensor Product Variational Formulation for Quantum Systems , 2004 .

[62]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[63]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[64]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[65]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[66]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[67]  J. I. Latorre,et al.  Scaling of entanglement support for matrix product states , 2007, 0712.1976.

[68]  Guifre Vidal,et al.  Tensor network states and algorithms in the presence of a global SU(2) symmetry , 2010, 1008.4774.

[69]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[70]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[71]  B. Clark,et al.  Finding Matrix Product State Representations of Highly Excited Eigenstates of Many-Body Localized Hamiltonians. , 2015, Physical review letters.

[72]  Glen Evenbly,et al.  Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops , 2018, Physical Review B.

[73]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[74]  G. Vidal,et al.  Infinite time-evolving block decimation algorithm beyond unitary evolution , 2008 .