Numerical Experiments for the Arnold-Winther Mixed Finite Elements for the Stokes Problem

The stress-velocity formulation of the stationary Stokes problem allows an Arnold--Winther mixed finite element formulation with some superconvergent reconstruction of the velocity. This local postprocessing gives rise to two reliable a posteriori error estimators which recover optimal convergence order for the stress error estimates. The theoretical results are investigated in numerical benchmark examples.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[3]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  Mats G. Larson,et al.  A posteriori error estimates for mixed finite element approximations of elliptic problems , 2007, Numerische Mathematik.

[6]  Martin Vohralík,et al.  Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..

[7]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[8]  Jan Reininghaus,et al.  The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .

[9]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[12]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[13]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[14]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[15]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[16]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[17]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[18]  Kwang Y. Kim A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..