Understanding entanglement sudden death through multipartite entanglement and quantum correlations

The effect of entanglement sudden death (ESD) can arise when entangling interactions convert purely bipartite entangled states into more generally entangled states. As a result, ESD can also be seen as a function of partitioning of the system, not just of time, as the system partitioning defines different (multipartite) entanglement classes. Computing both geometric entanglement hierarchies and the generalization of concurrence allows one to demonstrate that different methods of analysing quantum correlations provide both qualitative and quantitatively different descriptions of two commonly cited examples of ESD. These results follow directly from the inequivalence of entanglement and quantum correlations, the latter of which can exist in a state without the former.

[1]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[2]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[4]  T. Yu,et al.  Sudden death of entanglement of two Jaynes–Cummings atoms , 2006, quant-ph/0602206.

[5]  Marcelo O. Terra Cunha The geometry of entanglement sudden death , 2007 .

[6]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[7]  S. Luo Quantum discord for two-qubit systems , 2008 .

[8]  Ting Yu,et al.  Sudden death of entanglement: Classical noise effects , 2006 .

[9]  Enrique Solano,et al.  Inductive classification of multipartite entanglement under stochastic local operations and classical communication , 2006 .

[10]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[11]  J. Eberly,et al.  Negative entanglement measure, and what it implies , 2007, quant-ph/0703083.

[12]  Giuseppe Compagno,et al.  Dynamics of non-classically-reproducible entanglement , 2008, 0806.3182.

[13]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[14]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[15]  L. Lamata,et al.  Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .

[16]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[17]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[18]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[19]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[20]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[21]  N. Christensen,et al.  Potential multiparticle entanglement measure , 2000, quant-ph/0010052.

[22]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[23]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[24]  J. Eberly,et al.  Pairwise concurrence dynamics: a four-qubit model , 2007, quant-ph/0701111.

[25]  G. Bjork,et al.  Entanglement invariant for the double Jaynes-Cummings model , 2007, 0706.3813.

[26]  Entanglement versus energy in the entanglement transfer problem (8 pages) , 2006, quant-ph/0608139.

[27]  L. Davidovich,et al.  Direct measurement of finite-time disentanglement induced by a reservoir , 2005, quant-ph/0509204.

[28]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[29]  F. Illuminati,et al.  Hierarchies of geometric entanglement , 2007, 0712.4085.

[30]  L. Davidovich,et al.  Experimental investigation of the dynamics of entanglement : Sudden death, complementarity, and continuous monitoring of the environment , 2008, 0804.4556.

[31]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[32]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[33]  Z. Ficek,et al.  Delayed sudden birth of entanglement , 2008, 0802.4287.

[34]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[35]  Jonathan J. Halliwell,et al.  Disentanglement and decoherence by open system dynamics , 2004 .

[36]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[37]  A. Osterloh,et al.  ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.

[38]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[39]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[40]  N. An,et al.  Entanglement dynamics for the double Tavis-Cummings model , 2009, 0902.2421.

[41]  B. L. Gyorffy,et al.  Dynamics of entanglement and ‘attractor’ states in the Tavis–Cummings model , 2009, 0906.4005.