Ladder operator formalisms and generally deformed oscillator algebraic structures of quantum states in Fock space

We show that various kinds of one-photon quantum states studied in the field of quantum optics admit ladder operator formalisms and have the generally deformed oscillator (GDO) algebraic structure. The two-photon case is also considered. We obtain the ladder operator formalisms of two general states defined in the even/odd Fock space. The two-photon states may also have a GDO algebraic structure. Some interesting examples of one- and two-photon quantum states are given.

[1]  K. Penson,et al.  On the completeness of coherent states generated by binomial distribution , 2000 .

[2]  N. Konno,et al.  Lower bounds for critical values of a cancellative model , 2000 .

[3]  H. Fu,et al.  States interpolating between number and coherent states and their interaction with atomic systems , 1999, quant-ph/9909055.

[4]  Xiao-guang Wang Phase properties of hypergeometric states and negative hypergeometric states , 1999, quant-ph/9905029.

[5]  Guo-zhen Yang,et al.  Nonclassical properties and algebraic characteristics of negative binomial states in quantized radiation fields , 1999, quant-ph/9904027.

[6]  H. Fu,et al.  NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES , 1999, quant-ph/9903013.

[7]  S. Sivakumar,et al.  Even and odd nonlinear coherent states , 1998 .

[8]  Nai-Le Liu,et al.  Negative hypergeometric states of the quantized radiation field , 1998 .

[9]  B. Roy Nonclassical properties of the real and imaginary nonlinear Schrödinger cat states , 1998 .

[10]  G. Agarwal Mesoscopic superpositions of states: Approach to classicality and diagonalization in a coherent state basis , 1998, quant-ph/9810052.

[11]  S. Sivakumar Photon-added coherent states as nonlinear coherent states , 1998, quant-ph/9806061.

[12]  D. Welsch,et al.  Quantum state engineering using conditional measurement on a beam splitter , 1998, quant-ph/9803077.

[13]  M. Moussa,et al.  Generation of the reciprocal-binomial state , 1998 .

[14]  P. Roy,et al.  A generalized nonclassical state of the radiation field and some of its properties , 1997 .

[15]  Jean-Michel Raimond,et al.  Reversible Decoherence of a Mesoscopic Superposition of Field States , 1997 .

[16]  S. Mancini Even and odd nonlinear coherent states , 1997 .

[17]  Stephen M. Barnett,et al.  Tutorial review Quantum optical phase , 1997 .

[18]  E. Sudarshan,et al.  f-oscillators and nonlinear coherent states , 1996, quant-ph/9612006.

[19]  H. Fu LETTER TO THE EDITOR: Pólya states of quantized radiation fields, their algebraic characterization and non-classical properties , 1996, quant-ph/9611047.

[20]  Vogel,et al.  Nonlinear coherent states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  H. Fu,et al.  Negative Binomial States of Quantized Radiation Fields , 1996, quant-ph/9610024.

[22]  H. Fu,et al.  Hypergeometric states and their nonclassical properties , 1996, quant-ph/9610021.

[23]  H. Fu,et al.  Generally deformed oscillator, isospectral oscillator system and Hermitian phase operator , 1996, quant-ph/9611003.

[24]  H. Fu,et al.  Generalized binomial states: ladder operator approach , 1996, quant-ph/9607012.

[25]  Barnett,et al.  Phase measurement by projection synthesis. , 1996, Physical review letters.

[26]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[27]  Fu,et al.  Exponential and Laguerre squeezed states for su(1,1) algebra and the Calogero-Sutherland model. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Davidovich,et al.  Mesoscopic quantum coherences in cavity QED: Preparation and decoherence monitoring schemes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Vogel,et al.  Even and odd coherent states of the motion of a trapped ion. , 1996, Physical review letters.

[30]  Walmsley,et al.  Detecting quantum superpositions of classically distinguishable states of a molecule. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  Adam,et al.  Quantum-state engineering via discrete coherent-state superpositions. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Hassan,et al.  Field distribution in a generalized geometric radiation state. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Roversi,et al.  Statistical and phase properties of the binomial states of the electromagnetic field. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[34]  Si-cong,et al.  Connection of a type of q-deformed binomial state with q-spin coherent states. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[35]  Puri,et al.  Variation from number- to chaotic-state fields: A generalized geometric state. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  C. Daskaloyannis,et al.  General deformation schemes and N = 2 supersymmetric quantum mechanics , 1993 .

[37]  M. Hall Phase Resolution and Coherent Phase States , 1993 .

[38]  Knight,et al.  Superpositions of coherent states: Squeezing and dissipation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  Agarwal Gs Negative binomial states of the field-operator representation and production by state reduction in optical processes , 1992 .

[40]  Shapiro,et al.  Quantum phase measurement: A system-theory perspective. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[41]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[42]  Phoenix,et al.  Wave-packet evolution in the damped oscillator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  Shapiro,et al.  Ultimate quantum limits on phase measurement. , 1989, Physical review letters.

[44]  Barnett,et al.  Phase properties of the quantized single-mode electromagnetic field. , 1989, Physical review. A, General physics.

[45]  S. V. Lawande,et al.  The effects of negative binomial field distribution on Rabi oscillations in a two-level atom , 1989 .

[46]  S. Barnett,et al.  Unitary Phase Operator in Quantum Mechanics , 1988 .

[47]  A. Joshi,et al.  Effects of the Binomial Field Distribution on Collapse and Revival Phenomena in the Jaynes-Cummings Model , 1987 .

[48]  G. Dattoli,et al.  Binomial states of the quantized radiation field: comment , 1987 .

[49]  M. Teich,et al.  Binomial States of the Quantized Radiation Field , 1985 .

[50]  Lee Photon antibunching in a free-electron laser. , 1985, Physical review. A, General physics.

[51]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[52]  Metin Arik,et al.  Hilbert spaces of analytic functions and generalized coherent states , 1976 .

[53]  D. Stoler Equivalence classes of minimum-uncertainty packets. ii , 1970 .

[54]  E. Lerner,et al.  Some Mathematical Properties of Oscillator Phase Operators , 1970 .

[55]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[56]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[57]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[58]  G. Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state , 1991 .

[59]  Matsuo Glauber-Sudarshan P representation of negative binomial states. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[60]  S. Barnett,et al.  On the Hermitian Optical Phase Operator , 1989 .

[61]  H. Stumpf,et al.  Grundlagen der Dynamik in der nichtlinearen Spinortheorie der Elementarteilchen , 1965 .