Crater Morphometry on the Mafic Floor Unit at Jezero Crater, Mars: Comparisons to a Known Basaltic Lava Plain at the InSight Landing Site

[1]  M. Mellon,et al.  A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence , 2005 .

[2]  J. A. Grant,et al.  An Impact Crater Origin for the InSight Landing Site at Homestead Hollow, Mars: Implications for Near Surface Stratigraphy, Surface Processes, and Erosion Rates , 2020, Journal of Geophysical Research: Planets.

[3]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[4]  J. Grant,et al.  Degradation of Homestead Hollow at the InSight Landing Site Based on the Distribution and Properties of Local Deposits , 2020, Journal of Geophysical Research: Planets.

[5]  J. Head,et al.  Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing , 2012 .

[6]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[7]  M. Golombek,et al.  Degradation of 100‐m‐Scale Rocky Ejecta Craters at the InSight Landing Site on Mars and Implications for Surface Processes and Erosion Rates in the Hesperian and Amazonian , 2018, Journal of Geophysical Research: Planets.

[8]  J. Grant,et al.  Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars , 2006 .

[9]  Peter Grindrod,et al.  Minimum effective area for high resolution crater counting of martian terrains , 2015 .

[10]  C. Viviano,et al.  Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.

[11]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[12]  James W. Head,et al.  An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate , 2012 .

[13]  J. Grant,et al.  The science process for selecting the landing site for the 2020 Mars rover , 2018, Planetary and Space Science.

[14]  M. Mellon,et al.  High‐resolution thermal inertia mapping of Mars: Sites of exobiological interest , 2000 .

[15]  J. Grant,et al.  A cold‐wet middle‐latitude environment on Mars during the Hesperian‐Amazonian transition: Evidence from northern Arabia valleys and paleolakes , 2016 .

[16]  K. Kinch,et al.  Crater Statistics on the Dark‐Toned, Mafic Floor Unit in Jezero Crater, Mars , 2019, Geophysical Research Letters.

[17]  John F. Mustard,et al.  Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .

[18]  Jeroen Tromp,et al.  Initial results from the InSight mission on Mars , 2020, Nature Geoscience.

[19]  D. Montgomery,et al.  Effect of obliteration on crater‐count chronologies for Martian surfaces , 2008 .

[20]  M. Banks,et al.  Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites , 2018, Journal of geophysical research. Planets.

[21]  R. Fergason,et al.  THEMIS-Derived Thermal Inertia Mosaic of Mars: Product Description and Science Results , 2013 .

[22]  J. Grant,et al.  A possible synoptic source of water for alluvial fan formation in southern Margaritifer Terra, Mars , 2012 .

[23]  A. McEwen,et al.  The morphology of small fresh craters on Mars and the Moon , 2014 .

[24]  M. Day,et al.  Wind in Jezero Crater, Mars , 2019, Geophysical Research Letters.

[25]  R. Kirk,et al.  Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .

[26]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[27]  G. Bart The quantitative relationship between small impact crater morphology and regolith depth , 2014 .

[28]  R. J. Pike,et al.  Secondary-Impact Craters on the Moon: Topographic Form and Geologic Process , 1978 .

[29]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[30]  J. Grant,et al.  Comparison of InSight Homestead Hollow to Hollows at the Spirit Landing Site , 2020, Journal of Geophysical Research: Planets.

[31]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[32]  Richard J. Pike,et al.  Depth/diameter relations of fresh lunar craters: Revision from spacecraft data , 1974 .

[33]  Luther W. Beegle,et al.  The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life , 2018 .

[34]  W. Dietrich,et al.  Quantitative assessment of uncertainties in modeled crater retention ages on Mars , 2020, Icarus.

[35]  R. J. Sullivan,et al.  Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars , 2014 .

[36]  J. Grant,et al.  Geology of the InSight landing site on Mars , 2020, Nature Communications.

[37]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[38]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[39]  W. Watters,et al.  Morphometry of small recent impact craters on Mars: Size and terrain dependence, short‐term modification , 2015 .

[40]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[41]  S. Wilson,et al.  Persistent or repeated surface habitability on Mars during the late Hesperian ‐ Amazonian , 2017, 1703.06386.

[42]  J. Grant,et al.  Crater gradation in Gusev crater and Meridiani Planum, Mars , 2006 .

[43]  William E. Dietrich,et al.  Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range , 2001 .

[44]  Linda C. Kah,et al.  Gale crater and impact processes – Curiosity’s first 364 Sols on Mars , 2015 .

[45]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[46]  W. Hartmann Does crater “saturation equilibrium” occur in the solar system? , 1984 .

[47]  M. Golombek,et al.  Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas , 2018, Geophysical research letters.

[48]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[49]  J. Head,et al.  Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration , 2017 .

[50]  William E. Dietrich,et al.  Cosmogenic nuclides, topography, and the spatial variation of soil depth , 1999 .