Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples.

Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm(-1) which are attributed to haloarchaeal C(50) carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea.These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra.

[1]  H. Edwards,et al.  Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration , 2006, Analytical and bioanalytical chemistry.

[2]  M. Kates,et al.  Effect of glycerol on carotenogenesis in the extreme halophile, Halobacterium cutirubrum. , 1979, Canadian journal of microbiology.

[3]  E. Javaux Extreme life on Earth--past, present and possibly beyond. , 2006, Research in microbiology.

[4]  S. Pincus,et al.  Experimental support for an immunological approach to the search for life on other planets. , 2005, Astrobiology.

[5]  Rocco L Mancinelli,et al.  Planetary protection and the search for life beneath the surface of Mars. , 2003, Advances in space research : the official journal of the Committee on Space Research.

[6]  G. Wanner,et al.  Halococcus salifodinae sp. nov., an Archaeal Isolate from an Austrian Salt Mine , 1994 .

[7]  Alex Ellery,et al.  The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars , 2004 .

[8]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[9]  H. Edwards,et al.  Raman spectra of carotenoids in natural products. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  T. McGenity,et al.  From Intraterrestrials to Extraterrestrials — Viable Haloarchaea in Ancient Salt Deposits , 2004 .

[11]  G. Kargl,et al.  Astrobiology with haloarchaea from Permo-Triassic rock salt , 2002, International Journal of Astrobiology.

[12]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[13]  G. Landis Martian water: are there extant halobacteria on Mars? , 2001, Astrobiology.

[14]  T. McGenity,et al.  Halobacteria: the evidence for longevity , 1998, Extremophiles.

[15]  T. McGenity,et al.  Origins of halophilic microorganisms in ancient salt deposits. , 2000, Environmental microbiology.

[16]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[17]  Richard R. Schrock,et al.  Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene , 1991 .

[18]  H. Darmani Todar's Online Textbook of Bacteriology , 2006 .

[19]  J. Lanyi,et al.  Proton transfers in the bacteriorhodopsin photocycle. , 2006, Biochimica et biophysica acta.

[20]  A. Kletzin General Characteristics and Important Model Organisms , 2007 .

[21]  R. Callender,et al.  Resonance Raman studies of the purple membrane. , 1977, Biochemistry.

[22]  M. Kates,et al.  Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria , 1972, Archiv für Mikrobiologie.

[23]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[24]  C. Marshall,et al.  Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. , 2007, Astrobiology.

[25]  H. Edwards,et al.  Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study , 2007 .

[26]  M. Ashburner A Laboratory manual , 1989 .

[27]  W J O'Neil,et al.  The Mars Sample Return Project. , 2000, Acta astronautica.

[28]  John Whitehead Mars needs technology designed for sample return , 2007, Nature.

[29]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Oren The Order Halobacteriales , 2006 .

[31]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[32]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[33]  Horia-Nicolai Teodorescu,et al.  Mars and planetary science and technology : selected papers from EMC'04 , 2004 .

[34]  P. Bahn Complete Course in Astrobiology , 2007, Origins of Life and Evolution of Biospheres.

[35]  J D Rummel Implementing planetary protection requirements for sample return missions. , 2000, Advances in space research : the official journal of the Committee on Space Research.

[36]  R. Cavicchioli Archaea Molecular and Cellular Biology , 2007 .

[37]  C. Marshall,et al.  Vibrational spectroscopy of extant and fossil microbes: Relevance for the astrobiological exploration of Mars , 2006 .

[38]  H. Stan-Lotter,et al.  Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. , 2002, International journal of systematic and evolutionary microbiology.

[39]  L. Hafner,et al.  Raman spectroscopic study of the heterogeneity of microcolonies of a pigmented bacterium , 2006 .

[40]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[41]  S. Fendrihan,et al.  Extremely halophilic archaea and the issue of long-term microbial survival , 2006, Re/views in environmental science and bio/technology.

[42]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[43]  A. Treiman,et al.  The SNC meteorites are from Mars , 2000 .

[44]  H. Lammer,et al.  Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. , 2009, Astrobiology.

[45]  H. Edwards,et al.  Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile , 2005 .

[46]  H. Edwards,et al.  Raman spectroscopy in astrobiology , 2006, Analytical and bioanalytical chemistry.

[47]  Dieter Naumann,et al.  FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells , 1995 .

[48]  B. Javor Hypersaline Environments : Microbiology and Biogeochemistry , 1989 .

[49]  Eric Bapteste,et al.  Evolution of rhodopsin ion pumps in haloarchaea , 2007, BMC Evolutionary Biology.

[50]  K. Stetter,et al.  Very similar strains of Halococcus salifodinae are found in geographically separated permo-triassic salt deposits. , 1999, Microbiology.

[51]  Andrew Steele,et al.  Morphological biosignatures and the search for life on Mars. , 2003, Astrobiology.

[52]  H. Pfander C45- and C50-carotenoids , 1994 .

[53]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .

[54]  G. Kminek,et al.  Putting Together an Exobiology Mission: The ExoMars Example , 2008 .

[55]  A. Ellery,et al.  Why Raman spectroscopy on Mars?--a case of the right tool for the right job. , 2003, Astrobiology.

[56]  Jürgen Popp,et al.  On-line monitoring and identification of bioaerosols. , 2006, Analytical chemistry.

[57]  D. Naumann,et al.  Identification of medically relevant microorganisms by vibrational spectroscopy. , 2002, Journal of microbiological methods.

[58]  R. Baranski,et al.  Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis , 2005, Biopolymers.

[59]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[60]  Jürgen Popp,et al.  Raman spectroscopy--a prospective tool in the life sciences. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  M. Kates Biology of halophilic bacteria, Part II , 1993, Experientia.

[62]  A. Oren Halophilic Microorganisms and their Environments , 2002, Cellular Origin, Life in Extreme Habitats and Astrobiology.

[63]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[64]  Abigail C. Allwood,et al.  Raman spectroscopy reveals thermal palaeoenvironments of c.3.5 billion-year-old organic matter , 2006 .

[65]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[66]  Sergiu Fendrihan,et al.  Evaluation of the LIVE/DEAD BacLight Kit for Detection of Extremophilic Archaea and Visualization of Microorganisms in Environmental Hypersaline Samples , 2004, Applied and Environmental Microbiology.