Solving the Grad-Shafranov equation using spectral elements for tokamak equilibrium with toroidal rotation

The Grad-Shafranov equation is solved using spectral elements for tokamak equilibrium with toroidal rotation. The Grad-Shafranov solver builds upon and extends the NIMEQ code [Howell and Sovinec, Comput. Phys. Commun. 185 (2014) 1415] previously developed for static tokamak equilibria. Both geometric and algebraic convergence are achieved as the polynomial degree of the spectral-element basis increases. A new analytical solution to the Grad-Shafranov equation is obtained for Solov'ev equilibrium in presence of rigid toroidal rotation, in addition to a previously obtained analytical solution for a defferent set of equilibrium and rotation profiles. The numerical solutions from the extended NIMEQ are benchmarked with the analytical solutions, with good agreements. Besides, the extended NIMEQ code is benchmarked with the FLOW code [L. Guazzotto, R. Betti, et al., Phys. Plasma 11(2004)604].

[1]  E. J. Strait,et al.  The influence of rotation on the βN threshold for the 2∕1 neoclassical tearing mode in DIII-Da) , 2008 .

[2]  H. P. Zehrfeld,et al.  Computation of symmetric ideal MHD flow equilibria , 1984 .

[3]  T. Osborne,et al.  Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations , 2013 .

[4]  T. Xia,et al.  Six-field two-fluid simulations of peeling–ballooning modes using BOUT++ , 2013 .

[5]  Nakamura Yuji,et al.  Tokamak Equilibria with Toroidal Flows , 2000 .

[6]  Stephen C. Jardin,et al.  The Princeton spectral equilibrium code: PSEC , 1985 .

[7]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[8]  Jacques Blum,et al.  The self-consistent equilibrium and diffusion code sced , 1981 .

[9]  L. Solov’ev,et al.  THEORY OF HYDROMAGNETIC STABILITY OF TOROIDAL PLASMA CONFIGURATIONS. , 1967 .

[10]  T. Tala,et al.  Internal transport barrier dynamics with plasma rotation in JET , 2009 .

[11]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[12]  Paul B. Parks,et al.  Analytical equilibrium and interchange stability of single- and double-axis field-reversed configurations inside a cylindrical cavity , 2003 .

[13]  Shaojie Wang Theory of tokamak equilibria with central current density reversal. , 2004, Physical review letters.

[14]  Eliezer Hameiri,et al.  The equilibrium and stability of rotating plasmas , 1983 .

[15]  Fukun Liu,et al.  Observation of cocurrent toroidal rotation in the EAST tokamak with lower-hybrid current drive. , 2011, Physical review letters.

[16]  Herbert L Berk,et al.  Analytic field‐reversed equilibria , 1981 .

[17]  H. Perrin,et al.  Exact solutions of the stationary MHD equations for a rotating toroidal plasma , 1980 .

[18]  J. Greene,et al.  Effect of toroidal plasma flow and flow shear on global magnetohydrodynamic MHD modes , 1995 .

[19]  I. G. Miron,et al.  Analytical solutions to the Grad–Shafranov equation , 2004 .

[20]  C. Hegna The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas , 2016 .

[21]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[22]  F. Crisanti Analytical solution of the Grad Shafranov equation in an elliptical prolate geometry , 2019, Journal of Plasma Physics.

[23]  Alan J Wootton,et al.  Analytical tokamak equilibrium for shaped plasmas , 1996 .

[24]  R. J. Buttery,et al.  Islands in the stream: The effect of plasma flow on tearing stability , 2009 .

[25]  Wolfgang Kerner,et al.  Axisymmetric MHD equilibria with flow , 1983 .

[26]  R. Betti Beta limits for the N=1 mode in rotating-toroidal-resistive plasmas surrounded by a resistive wall , 1998 .

[27]  S. Ding Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST , 2016 .

[28]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[29]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[30]  M. Persson,et al.  Tearing-mode stability in a cylindrical plasma with equilibrium flows , 1991, Journal of Plasma Physics.

[31]  Luca Guazzotto,et al.  A family of analytic equilibrium solutions for the Grad–Shafranov equation , 2007 .

[32]  Hiroshi Shirai,et al.  Characteristics of internal transport barriers in JT-60U reversed shear plasmas , 2001 .

[33]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[34]  D. J. Ward,et al.  Stabilization of ideal modes by resistive walls in tokamaks with plasma rotation and its effect on the beta limit , 1995 .

[35]  R. L. Haye,et al.  The stabilizing effect of flow shear on m/n=3/2 magnetic island width in DIII-D , 2008 .

[36]  Youwen Sun,et al.  Neoclassical toroidal viscosity torque in tokamak edge pedestal induced by external resonant magnetic perturbation , 2017, 1706.03213.

[37]  A. Pletzer,et al.  Theory of perturbed equilibria for solving the Grad–Shafranov equation , 1999 .

[38]  M. Chu,et al.  Generalization of Solovev’s approach to finding equilibrium solutions for axisymmetric plasmas with flow , 2018 .

[39]  J. Manickam,et al.  Numerical study of tokamak equilibria with arbitrary flow , 2004 .

[40]  A. Sen,et al.  Tearing mode stability in a toroidally flowing plasma , 2013 .

[41]  J. P. Goedbloed,et al.  FINESSE: axisymmetric MHD equilibria with flow , 2002 .

[42]  J. Manickam,et al.  Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria , 1979 .

[43]  P. B. Snyder,et al.  MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas , 2009, Comput. Phys. Commun..

[44]  F. Troyon,et al.  Computation of MHD equilibria by a quasi-inverse finite hybrid element approach , 1987 .

[45]  Shurong Wang,et al.  Influence of toroidal rotation on resistive tearing modes in tokamaks , 2015 .

[46]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[47]  R. L. Haye,et al.  Influence of plasma flow shear on tearing in DIII-D hybrids , 2011 .

[48]  P. Zhu,et al.  Enhanced toroidal flow stabilization of edge localized modes with increased plasma density , 2016, 1611.05131.

[49]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[50]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[51]  Silvestar Sesnic,et al.  A review of some analytical solutions to the Grad-Shafranov equation , 2014, 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[52]  L. Lao,et al.  MHD Equilibrium Reconstruction in the DIII-D Tokamak , 2005 .

[53]  E. J. Strait,et al.  Relationship between onset thresholds, trigger types and rotation shear for the m/n = 2/1 neoclassical tearing mode in a high-β spherical torus , 2009 .

[54]  P. J. Mc Carthy,et al.  Analytical solutions to the Grad–Shafranov equation for tokamak equilibrium with dissimilar source functions , 1999 .