Increasing Electrical Damping in Energy-Harnessing Transducers

Wireless microsensors that monitor and detect activity in factories, farms, military camps, vehicles, hospitals, and the human body can save money, energy, and lives. Miniaturized batteries, unfortunately, easily exhaust, which limit deployment to few niche markets. Luckily, harnessing ambient energy offers hope. The challenge is tiny transducers convert only a small fraction of the energy available into the electrical domain, and the microelectronics that transfer and condition power dissipate some of that energy, further reducing the budget on which microsystems rely to operate. Improving transducers and trimming power losses in the system to increase output power is therefore of paramount importance. Increasing the electrical damping force against which transducers work also deserves attention because output power is, fundamentally, the result of damping. This paper explores how investing energy to increase electrical damping can boost output power in electromagnetic, electrostatic, and piezoelectric transducers.

[1]  Jeffrey H. Lang,et al.  A variable-capacitance vibration-to-electric energy harvester , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[3]  Erick O. Torres,et al.  Harvesting Ambient Kinetic Energy With Switched-Inductor Converters , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  David Blaauw,et al.  Circuit Design Advances for Wireless Sensing Applications , 2010, Proceedings of the IEEE.

[5]  Anantha Chandrakasan,et al.  An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor , 2010, IEEE Journal of Solid-State Circuits.

[6]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[7]  Maysam Ghovanloo,et al.  An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Chih-Jung Chen,et al.  A Study of Loosely Coupled Coils for Wireless Power Transfer , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Erick O. Torres,et al.  A 0.7-$\mu$ m BiCMOS Electrostatic Energy-Harvesting System IC , 2010, IEEE Journal of Solid-State Circuits.

[11]  Rahul Sarpeshkar,et al.  Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[12]  T.C. Green,et al.  Architectures for vibration-driven micropower generators , 2004, Journal of Microelectromechanical Systems.

[13]  Gabriel A. Rincón-Mora,et al.  A 2-$\mu$ m BiCMOS Rectifier-Free AC–DC Piezoelectric Energy Harvester-Charger IC , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[14]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[15]  Xun Liu,et al.  Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features , 2007, IEEE Transactions on Power Electronics.

[16]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .