Generalized Log‐Rank Tests for Partly Interval‐Censored Failure Time Data
暂无分享,去创建一个
Xingqiu Zhao | Xingqiu Zhao | Qiang Zhao | Jainguo Sun | Jong S Kim | J. S. Kim | Qiang Zhao | Jainguo Sun
[1] Peter J. Bickel,et al. Information Bounds and Nonparametric Maximum Likelihood Estimation (Piet Groeneboom and Jon A. Wellner) , 1994, SIAM Rev..
[2] B. Turnbull. The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .
[3] Niels Keiding,et al. Statistical Models Based on Counting Processes , 1993 .
[4] J. Kalbfleisch,et al. The Statistical Analysis of Failure Time Data , 1980 .
[5] Jian Huang,et al. ASYMPTOTIC PROPERTIES OF NONPARAMETRIC ESTIMATION BASED ON PARTLY INTERVAL-CENSORED DATA , 2000 .
[6] D. Park. The Statistical Analysis of Interval-Censored Failure Time Data , 2007 .
[7] D. Finkelstein,et al. A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.
[8] P. Andersen,et al. Life insurance for insulin-dependent diabetics , 1987 .
[9] Gang Li. Nonparametric likelihood ratio goodness-of-fit tests for survival data , 2003 .
[10] Jong S. Kim,et al. Maximum likelihood estimation for the proportional hazards model with partly interval‐censored data , 2003 .
[11] Piet Groeneboom,et al. Lectures on inverse problems , 1996 .
[12] Laurence L. George,et al. The Statistical Analysis of Failure Time Data , 2003, Technometrics.
[13] J. Peto,et al. Asymptotically Efficient Rank Invariant Test Procedures , 1972 .
[14] J. Wellner,et al. Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .
[15] J Sun,et al. A non-parametric test for interval-censored failure time data with application to AIDS studies. , 1996, Statistics in medicine.
[16] Jian Huang,et al. Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1 , 1995 .
[17] Xingqiu Zhao,et al. Generalized Log‐Rank Tests for Interval‐Censored Failure Time Data , 2005 .
[18] R B D'Agostino,et al. Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. , 1992, Biometrics.
[19] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .