Generalized Log‐Rank Tests for Partly Interval‐Censored Failure Time Data

In this paper, we consider incomplete survival data: partly interval-censored failure time data where observed data include both exact and interval-censored observations on the survival time of interest. We present a class of generalized log-rank tests for this type of survival data and establish their asymptotic properties. The method is evaluated using simulation studies and illustrated by a set of real data from a diabetes study.

[1]  Peter J. Bickel,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation (Piet Groeneboom and Jon A. Wellner) , 1994, SIAM Rev..

[2]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[3]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[4]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[5]  Jian Huang,et al.  ASYMPTOTIC PROPERTIES OF NONPARAMETRIC ESTIMATION BASED ON PARTLY INTERVAL-CENSORED DATA , 2000 .

[6]  D. Park The Statistical Analysis of Interval-Censored Failure Time Data , 2007 .

[7]  D. Finkelstein,et al.  A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.

[8]  P. Andersen,et al.  Life insurance for insulin-dependent diabetics , 1987 .

[9]  Gang Li Nonparametric likelihood ratio goodness-of-fit tests for survival data , 2003 .

[10]  Jong S. Kim,et al.  Maximum likelihood estimation for the proportional hazards model with partly interval‐censored data , 2003 .

[11]  Piet Groeneboom,et al.  Lectures on inverse problems , 1996 .

[12]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[13]  J. Peto,et al.  Asymptotically Efficient Rank Invariant Test Procedures , 1972 .

[14]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[15]  J Sun,et al.  A non-parametric test for interval-censored failure time data with application to AIDS studies. , 1996, Statistics in medicine.

[16]  Jian Huang,et al.  Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1 , 1995 .

[17]  Xingqiu Zhao,et al.  Generalized Log‐Rank Tests for Interval‐Censored Failure Time Data , 2005 .

[18]  R B D'Agostino,et al.  Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. , 1992, Biometrics.

[19]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .