Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics

[1]  Rainald Löhner,et al.  Parabolic recovery of boundary gradients , 2007 .

[2]  Frieke M. A. Box,et al.  Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals , 2007, Journal of magnetic resonance imaging : JMRI.

[3]  B. Romner,et al.  Computation of Hemodynamics in the Circle of Willis , 2007, Stroke.

[4]  K. Scheffler,et al.  In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. , 2007, AJNR. American journal of neuroradiology.

[5]  Murat Aksoy,et al.  Time‐resolved 3D quantitative flow MRI of the major intracranial vessels: Initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging , 2007, Magnetic resonance in medicine.

[6]  C. Putman,et al.  Image-based computational hemodynamics methods and their application for the analysis of blood flow past endovascular devices , 2007 .

[7]  C. Putman,et al.  Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. , 2005, AJNR. American journal of neuroradiology.

[8]  Alejandro F. Frangi,et al.  Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity , 2005, IEEE Transactions on Medical Imaging.

[9]  K. Katada,et al.  Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms , 2004, Stroke.

[10]  Rainald Löhner,et al.  Blood-flow models of the circle of Willis from magnetic resonance data , 2003 .

[11]  Alastair J. Martin,et al.  Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. , 2003, AJNR. American journal of neuroradiology.

[12]  Miki Hirabayashi,et al.  Characterization of flow reduction properties in an aneurysm due to a stent. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Peter L. Choyke,et al.  Isosurfaces as deformable models for magnetic resonance angiography , 2003, IEEE Transactions on Medical Imaging.

[14]  Fernando Calamante,et al.  Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics , 2003, NeuroImage.

[15]  Sang Hoon Lee,et al.  PUBS: Pulsatility‐based segmentation of lumens conducting non‐steady flow , 2003, Magnetic resonance in medicine.

[16]  D. Holdsworth,et al.  Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. , 2003, AJNR. American journal of neuroradiology.

[17]  B. Weir Unruptured intracranial aneurysms: a review. , 2002, Journal of neurosurgery.

[18]  F. Viñuela,et al.  Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. , 2001, Journal of neurosurgery.

[19]  Peter L. Choyke,et al.  Vessel surface reconstruction with a tubular deformable model , 2001, IEEE Transactions on Medical Imaging.

[20]  R Löhner,et al.  Merging of intersecting triangulations for finite element modeling. , 2001, Journal of biomechanics.

[21]  T. David,et al.  Computational Models of Blood Flow in the Circle of Willis , 2001, Computer methods in biomechanics and biomedical engineering.

[22]  R. Sclabassi,et al.  Saccular aneurysm formation in curved and bifurcating arteries. , 1999, AJNR. American journal of neuroradiology.

[23]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[24]  Rainald Löhner,et al.  Automatic unstructured grid generators , 1997 .

[25]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[26]  Rainald Löhner Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids , 1995 .

[27]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[28]  K. Kayembe,et al.  Cerebral Aneurysms and Variations in the Circle of Willis , 1984, Stroke.