Multi-scale features for approximate alignment of point-based surfaces

We introduce a novel method for approximate alignment of point-based surfaces. Our approach is based on detecting a set of salient feature points using a scale-space representation. For each feature point we compute a signature vector that is approximately invariant under rigid transformations. We use the extracted signed feature set in order to obtain approximate alignment of two surfaces. We apply our method for the automatic alignment of multiple scans using both scan-to-scan and scan-to-model matching capabilities.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[4]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[5]  Aly A. Farag,et al.  Surfacing Signatures: An Orientation Independent Free-Form Surface Representation Scheme for the Purpose of Objects Registration and Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[7]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[8]  Yi-Ping Hung,et al.  RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[10]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[11]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[12]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[13]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[14]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[15]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[17]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  zx SxxSxy,et al.  Closed-Form Solution of Absolute Orientation Using Orthonormal Matrices , 1999 .

[19]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[20]  Luc Van Gool,et al.  Automatic Crude Patch Registration: Toward Automatic 3D Model Building , 2002, Comput. Vis. Image Underst..

[21]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[22]  A. Yuille,et al.  Two- and Three-Dimensional Patterns of the Face , 2001 .

[23]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[24]  Andrew E. Johnson,et al.  Surface registration by matching oriented points , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[25]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[26]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..