Error analysis for circle fitting algorithms

We study the problem of fitting circles (or circular arcs) to data points observed with errors in both variables. A detailed error analysis for all popular circle fitting methods – geometric fit, Kasa fit, Pratt fit, and Taubin fit – is presented. Our error analysis goes deeper than the traditional expansion to the leading order. We obtain higher order terms, which show exactly why and by how much circle fits differ from each other. Our analysis allows us to construct a new algebraic (non-iterative) circle fitting algorithm that outperforms all the existing methods, including the (previously regarded as unbeatable) geometric fit.

[1]  N. N. Chan On Circular Functional Relationships , 1965 .

[2]  J. Kadane Testing Overidentifying Restrictions When the Disturbances Are Small , 1970 .

[3]  I. Kasa A circle fitting procedure and its error analysis , 1976, IEEE Transactions on Instrumentation and Measurement.

[4]  T. W. Anderson Estimation of Linear Functional Relationships: Approximate Distributions and Connections with Simultaneous Equations in Econometrics , 1976 .

[5]  W. Fuller,et al.  Estimation of Nonlinear Errors-in-Variables Models , 1982 .

[6]  Takamitsu Sawa,et al.  Exact and Approximate Distributions of the Maximum Likelihood Estimator of a Slope Coefficient , 1982 .

[7]  U. M. Landau,et al.  Estimation of a circular arc center and its radius , 1987, Comput. Vis. Graph. Image Process..

[8]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[9]  Yasuo Amemiya,et al.  Estimation for the Nonlinear Functional Relationship , 1988 .

[10]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[11]  Mark Berman,et al.  Large sample bias in least squares estimators of a circular arc center and its radius , 1989, Comput. Vis. Graph. Image Process..

[12]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  S. H. Joseph Unbiased Least Squares Fitting of Circular Arcs , 1994, CVGIP Graph. Model. Image Process..

[14]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[15]  Kenichi Kanatani,et al.  Cramer-Rao Lower Bounds for Curve Fitting , 1998, Graph. Model. Image Process..

[16]  A. Strandliea,et al.  Particle tracks fitted on the Riemann sphere , 2000 .

[17]  Yves Nievergelt,et al.  A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres , 2002, Numerische Mathematik.

[18]  Biswajit Sarkar,et al.  Approximation of digital curves with line segments and circular arcs using genetic algorithms , 2003, Pattern Recognit. Lett..

[19]  Edward J. Delp,et al.  Classical geometrical approach to circle fitting - review and new developments , 2003, J. Electronic Imaging.

[20]  Dale Umbach,et al.  A few methods for fitting circles to data , 2003, IEEE Trans. Instrum. Meas..

[21]  Fitting circular arcs by orthogonal distance regression , 2004 .

[22]  Kenichi Kanatani,et al.  For geometric inference from images, what kind of statistical model is necessary? , 2002, Systems and Computers in Japan.

[23]  Estimating the parameters of a circle by heteroscedastic regression models , 2004 .

[24]  Peter Meer,et al.  ROBUST TECHNIQUES FOR COMPUTER VISION , 2004 .

[25]  Nikolai I. Chernov,et al.  Statistical efficiency of curve fitting algorithms , 2003, Comput. Stat. Data Anal..

[26]  K. Kanatani Optimality of Maximum Likelihood Estimation for Geometric Fitting and the KCR Lower Bound , 2005 .

[27]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .

[28]  Nikolai I. Chernov,et al.  Least Squares Fitting of Circles , 2005, Journal of Mathematical Imaging and Vision.

[29]  Sen Zhang,et al.  Feature extraction for outdoor mobile robot navigation based on a modified Gauss-Newton optimization approach , 2006, Robotics Auton. Syst..

[30]  I. Vaughan L. Clarkson,et al.  A statistical analysis of the Delogne-Kåsa method for fitting circles , 2006, Digit. Signal Process..

[31]  I. Vaughan L. Clarkson,et al.  Maximum-likelihood estimation of circle parameters via convolution , 2006, IEEE Transactions on Image Processing.

[32]  Kenichi Kanatani,et al.  Ellipse Fitting with Hyperaccuracy , 2006, IEICE Trans. Inf. Syst..

[33]  Kenichi Kanatani,et al.  Statistical Optimization for Geometric Fitting: Theoretical Accuracy Bound and High Order Error Analysis , 2008, International Journal of Computer Vision.

[34]  Nikolai I. Chernov,et al.  Fitting circles to data with correlated noise , 2008, Comput. Stat. Data Anal..

[35]  N. Chernov,et al.  Fitting circles to scattered data: parameter estimates have no moments , 2009, 0907.0429.

[36]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.