Towards the Poincaré Conjecture and the Classification of 3-Manifolds, Volume 50, Number 10

1226 NOTICES OF THE AMS VOLUME 50, NUMBER 10 T he Poincaré Conjecture was posed ninetynine years ago and may possibly have been proved in the last few months. This note will be an account of some of the major results over the past hundred years which have paved the way towards a proof and towards the even more ambitious project of classifying all compact 3-dimensional manifolds. The final paragraph provides a brief description of the latest developments, due to Grigory Perelman. A more serious discussion of Perelman’s work will be provided in a subsequent note by Michael Anderson.

[1]  S. Nikitin On 3-manifolds , 2005, Graduate Studies in Mathematics.

[2]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[3]  On Long-Time Evolution in General Relativity¶and Geometrization of 3-Manifolds , 2000, gr-qc/0006042.

[4]  Michael Kapovich,et al.  Hyperbolic Manifolds and Discrete Groups , 2000 .

[5]  Ioan Mackenzie James,et al.  History of topology , 1999 .

[6]  C. Gordon CHAPTER 15 – 3-Dimensional Topology up to 1960 , 1999 .

[7]  R. Hamilton Non-singular solutions of the Ricci flow on three-manifolds , 1999 .

[8]  B. Chow,et al.  RECENT DEVELOPMENTS ON THE RICCI FLOW , 1998, math/9811123.

[9]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[10]  Michael T. Anderson Scalar Curvature and Geometrization Conjectures for 3-Manifolds , 1997 .

[11]  C. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .

[12]  Jean-Pierre Otal Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3 , 1996 .

[13]  D. Jungreis,et al.  Convergence groups and seifert fibered 3-manifolds , 1994 .

[14]  Robert E. Gompf An exotic menagerie , 1993 .

[15]  C. McMullen Riemann surfaces and the geometrization of 3-manifolds , 1992, math/9210224.

[16]  David Gabai Convergence groups are Fuchsian groups , 1991 .

[17]  R. Gurjar On a conjecture of C.T.C. Wall , 1991 .

[18]  S. Smale The story of the higher dimensional poincaré conjecture (what actually happened on the beaches of rio) , 1990 .

[19]  P. Tukia Homeomorphic conjugates of Fuchsian groups. , 1988 .

[20]  Leonard S. Charlap,et al.  Bieberbach Groups and Flat Manifolds , 1986 .

[21]  J. Morgan,et al.  On Thurston''s uniformization theorem for three-dimensional manifolds , 1984 .

[22]  P. Scott,et al.  The geometries of 3-manifolds , 1983 .

[23]  Peter Scott There are no fake Seifert Fibre Spaces with Infinite π 1 , 1983 .

[24]  F. Browder The mathematical heritage of Henri Poincaré , 1983 .

[25]  G. Whitehead,et al.  Fifty years of homotopy theory , 1983 .

[26]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[27]  J. Milnor Hyperbolic geometry: The first 150 years , 1982 .

[28]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[29]  Michael H. Freedman,et al.  The topology of four-dimensional manifolds , 1982 .

[30]  Peter Scott A NEW PROOF OF THE ANNULUS AND TORUS THEOREMS , 1980 .

[31]  Klaus Johannson,et al.  Homotopy Equivalences of 3-Manifolds with Boundaries , 1979 .

[32]  William Jaco,et al.  Seifert fibered spaces in 3-manifolds , 1979 .

[33]  Robert F. Riley An elliptical path from parabolic representations to hyperbolic structures , 1979 .

[34]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[35]  J. Milnor Curvatures of left invariant metrics on lie groups , 1976 .

[36]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[37]  C. Gordon,et al.  Cyclic normal subgroups of fundamental groups of 3-manifolds , 1975 .

[38]  Robert F. Riley A quadratic parabolic group , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  T. Chapman,et al.  Topological Invariance of Whitehead Torsion , 1974 .

[40]  A. Haefliger,et al.  Torsion et type simple d’homotopie , 1970 .

[41]  R. Kirby,et al.  On the triangulation of manifolds and the Hauptvermutung , 1969 .

[42]  Le Cerf de la Viéville,et al.  Sur les difféomorphismes de la sphère de dimension trois (Г[4]=0) , 1968 .

[43]  Friedhelm Waldhausen,et al.  On irreducible 3-manifolds which are sufficiently large * , 2010 .

[44]  F. Waldhausen Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten , 1967 .

[45]  J. D. Miller Modifications and cobounding manifolds , 1967 .

[46]  John Milnor,et al.  A Unique Decomposition Theorem for 3-Manifolds , 1962 .

[47]  W. Haken,et al.  Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .

[48]  Horst Schubert,et al.  Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .

[49]  W. Haken,et al.  Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten , 1961 .

[50]  S. Smale Generalized Poincare's Conjecture in Dimensions Greater Than Four , 1961 .

[51]  John Stallings,et al.  Polyhedral homotopy-spheres , 1960 .

[52]  James Munkres Obstructions to the smoothing of piecewise-differentiable homeomorphisms , 1959 .

[53]  Stephen Smale,et al.  DIFFEOMORPHISMS OF THE 2-SPHERE , 1959 .

[54]  John Milnor,et al.  GROUPS WHICH ACT ON Su WITHOUT FIXED POINTS. , 1957 .

[55]  C D Papakyriakopoulos,et al.  ON DEHN'S LEMMA AND THE ASPHERICITY OF KNOTS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Georges de Rham Complexes à automorphismes et homéomorphie différentiable , 1950 .

[57]  Hans Zassenhaus,et al.  Über einen Algorithmus zur Bestimmung der Raumgruppen , 1948 .

[58]  A. Preissmann Quelques propriétés globales des espaces de Riemann , 1942 .

[59]  L. Vietoris Lehrbuch der Topologie , 1937 .

[60]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[61]  J. W. Alexander On the Subdivision of 3-Space by a Polyhedron. , 1924, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. W. Alexander Note on two three-dimensional manifolds with the same group , 1919 .

[63]  L. Bieberbach,et al.  Über die Bewegungsgruppen der Euklidischen Räume , 1911 .

[64]  M. Dehn,et al.  Über die Topologie des dreidimensionalen Raumes , 1910 .

[65]  L. Bieberbach Ueber die Bewegungsgruppen des n-dimensionalen euclidischen Raumes mit einem endlichen Fundamentalbereich , 1910 .

[66]  Henri Poincaré,et al.  Second Complément à l'Analysis Situs , 1900 .