Estimation of a subset of regression coefficients of interest in a model with non-spherical disturbances

This paper considers the estimation of a subset of regression coefficients in a linear regression model with non-spherical disturbances, when other regression coefficients are of no interest. A family of estimators is considered and its asymptotic distribution is derived. This proposed family of improved estimators is compared with the usual unrestricted FGLS estimator, and dominance conditions are obtained with respect to risk under quadratic loss as well as the Pitman nearness criterion. The results of a numerical simulation are presented to illustrate the risk performance of various estimators.

[1]  Alan T. K. Wan,et al.  SEPARATE VERSUS SYSTEM METHODS OF STEIN-RULE ESTIMATION IN SEEMINGLY UNRELATED REGRESSION MODELS , 2002 .

[2]  K. Ohtani Minimum mean squared error estimation of each individual coefficient in a linear regression model , 1997 .

[3]  V. K. Srivastava,et al.  Pitman closeness for Stein-rule estimators of regression coefficients , 1993 .

[4]  Guohua Zou,et al.  Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors , 2007 .

[5]  Dai-Gyoung Kim,et al.  Bayesian inference and model selection in latent class logit models with parameter constraints: An application to market segmentation , 2003 .

[6]  Alan T. K. Wan,et al.  Unbiased estimation of the MSE matrices of improved estimators in linear regression , 2003 .

[7]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[8]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .

[9]  Shalabh,et al.  Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function , 2004 .

[10]  The Stein paradox in the pitman closeness , 1987 .

[11]  Alan T. K. Wan,et al.  On the Sampling Performance of an Improved Stein Inequality Restricted Estimator , 1998 .

[12]  K. Ohtani Exact small sample properties of an operational variant of the minimum mean squared error estimator , 1996 .

[13]  P. Sen,et al.  The Stein Paradox in the Sense of the Pitman Measure of Closeness , 1989 .

[14]  Xinyu Zhang,et al.  Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market , 2011, Comput. Stat. Data Anal..

[15]  C. R. Rao,et al.  The pitman nearness criterion and its determination , 1986 .

[16]  Aman Ullah,et al.  Double k-Class Estimators of Coefficients in Linear Regression , 1978 .

[17]  Alan T. K. Wan,et al.  Minimum mean-squared error estimation in linear regression with an inequality constraint , 2000 .

[18]  R. W. Farebrother,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[19]  S. Peddada A short note on Pitman's measure of nearness , 1985 .

[20]  R. Khattree,et al.  A short note on pitman nearness for elliptically symmetric estimators , 1987 .

[21]  Kurt Hoffmann,et al.  Stein estimation—A review , 2000 .

[22]  G. Judge,et al.  Chapter 10 Biased estimation , 1983 .

[23]  An iterative feasible minimum mean squared error estimator of the disturbance variance in linear regression under asymmetric loss , 1999 .

[24]  Alan T. K. Wan,et al.  STEIN-RULE RESTRICTED REGRESSION ESTIMATOR IN A LINEAR REGRESSION MODEL WITH NONSPHERICAL DISTURBANCES , 2001 .

[25]  Stein‐Rule Estimation in Mixed Regression Models , 2000 .

[26]  J. Neyman,et al.  Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , 1963 .

[27]  K. Ohtani On an adjustment of degrees of freedom in the minimim mean squared error ertimator , 1996 .

[28]  Alan T. K. Wan,et al.  Improved Estimators of Hedonic Housing Price Models , 2006 .

[29]  Rand R. Wilcox,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[30]  Kazuhiro Ohtani,et al.  MSE performance of a heterogeneous pre-test estimator , 1999 .

[31]  Stein-type improved estimation of standard error under asymmetric LINEX loss function , 2009 .

[32]  Jan R. Magnus,et al.  On the harm that ignoring pretesting can cause , 2004 .

[33]  James Durbin,et al.  Estimation of Regression Coefficients of Interest when Other Regression Coefficients are of no Interest , 1999 .

[34]  Alan T. K. Wan,et al.  Double k -class estimators in regression models with non-spherical disturbances , 2001 .

[35]  H. Theil Principles of econometrics , 1971 .

[36]  R. Khattree,et al.  On Pitman Nearness and variance of estimators , 1986 .

[37]  A. Chaturvedi,et al.  STEIN RULE ESTIMATION IN LINEAR MODEL WITH NONSCALAR ERROR COVARIANCE MATRIX , 1990 .

[38]  A. Baranchik Inadmissibility of Maximum Likelihood Estimators in Some Multiple Regression Problems with Three or More Independent Variables , 1973 .

[39]  Thomas J. Rothenberg,et al.  APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES , 1984 .

[40]  Xinyu Zhang,et al.  Robustness of Stein-type estimators under a non-scalar error covariance structure , 2009, J. Multivar. Anal..

[41]  Alan T. K. Wan,et al.  Operational Variants of the Minimum Mean Squared Error Estimator in Linear Regression Models with Non-Spherical Disturbances , 2000 .

[42]  Alan T. K. Wan The Non-Optimality of Interval Restricted and Pre-Test Estimators Under Squared Error Loss , 1994 .

[43]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[44]  Comparison of the Stein and the usual estimators for the regression error variance under the Pitman nearness criterion when variables are omitted , 2009 .