The Use of Posterior Predictive P-Values in Testing Goodness-of-Fit
暂无分享,去创建一个
[1] AN Kolmogorov-Smirnov,et al. Sulla determinazione empírica di uma legge di distribuzione , 1933 .
[2] F. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .
[3] I. Guttman. The Use of the Concept of a Future Observation in Goodness‐Of‐Fit Problems , 1967 .
[4] Douglas H. Jones,et al. Goodness-of-fit test statistics that dominate the Kolmogorov statistics , 1979 .
[5] D. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .
[6] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[7] K. Koehler,et al. Goodness-of-fit tests based on P—P probability plots , 1990 .
[8] K. Koehler,et al. Goodness-of-Fit Tests Based onP-PProbability Plots , 1990 .
[9] Xiao-Li Meng,et al. Posterior Predictive $p$-Values , 1994 .
[10] Xiao-Li Meng,et al. Posterior Predictive Assessment of Model Fitnessvia Realized , 1995 .
[11] Xiao-Li Meng,et al. POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .
[12] M. T. Rodríguez-Bernal,et al. Asymptotic behaviour of the posterior predictive p-value , 1997 .
[13] J. Horra,et al. The posterior predictive p-value: an alternative to the classical p-value , 1999 .
[14] M. J. Bayarri,et al. P Values for Composite Null Models , 2000 .
[15] M. T. Rodríguez-Bernal,et al. Posterior predictive p-values: what they are and what they are not , 2001 .
[16] H. Stern,et al. Posterior predictive model checking in hierarchical models , 2003 .
[17] L. Leemis,et al. Minimum Kolmogorov–Smirnov test statistic parameter estimates , 2006 .
[18] N. Hjort,et al. Post-Processing Posterior Predictive p Values , 2006 .
[19] Zvi Drezner,et al. A Modified Kolmogorov–Smirnov Test for Normality , 2010, Commun. Stat. Simul. Comput..
[20] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .