Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran

[1]  Abdullah M. Asiri,et al.  Identifying the Origin of Ti3+ Activity toward Enhanced Electrocatalytic N2 Reduction over TiO2 Nanoparticles Modulated by Mixed‐Valent Copper , 2020, Advanced materials.

[2]  Xiaolin Zhu,et al.  Recent Progress in Engineering Metal Halide Perovskite for Efficient Visible Light-Driven Photocatalysis. , 2020, ChemSusChem.

[3]  Zhichuan J. Xu,et al.  Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting , 2020 .

[4]  Duncan N. Johnstone,et al.  Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites , 2020, Nature.

[5]  Zhengshan J. Yu,et al.  Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells , 2020, Science.

[6]  Bahareh Shirinfar,et al.  Interfacial Photoelectrochemical Catalysis: Solar-Induced Green Synthesis of Organic Molecules. , 2020, ChemSusChem.

[7]  Zhong Lin Wang,et al.  Unconventional Route to Oxygen Vacancies-Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. , 2020, Angewandte Chemie.

[8]  C. Ochoa-Hernández,et al.  A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond Activation , 2019, Angewandte Chemie.

[9]  B. König,et al.  Synthetic Photoelectrochemistry , 2019, Angewandte Chemie.

[10]  Zhong Lin Wang,et al.  Unconventional Route to Oxygen‐Vacancy‐Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells , 2019, Angewandte Chemie.

[11]  Zongbao Li,et al.  Investigation of Oxygen Passivation for High-Performance All-Inorganic Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[12]  E. Reisner,et al.  Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems , 2019, Nature Materials.

[13]  M. Beller,et al.  Author Correction: Streamlined hydrogen production from biomass , 2019, Nature Catalysis.

[14]  Xudong Wang,et al.  In Situ Construction of a Cs2SnI6 Perovskite Nanocrystal/SnS2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. , 2019, Journal of the American Chemical Society.

[15]  Xiaolin Zhu,et al.  Lead halide perovskites for photocatalytic organic synthesis , 2019, Nature Communications.

[16]  R. Friend,et al.  Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications. , 2019, ACS applied materials & interfaces.

[17]  T. Watson,et al.  Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water , 2019, Nature Communications.

[18]  H. Ait Ahsaine,et al.  Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO2 Reduction , 2019, ACS Energy Letters.

[19]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[20]  Xudong Wang,et al.  Recent Advances in Halide Perovskite Single‐Crystal Thin Films: Fabrication Methods and Optoelectronic Applications , 2019, Solar RRL.

[21]  Song Jin,et al.  Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties , 2019, Nature Reviews Materials.

[22]  M. Kanatzidis,et al.  Prospects for low-toxicity lead-free perovskite solar cells , 2019, Nature Communications.

[23]  M. Grätzel,et al.  Photoelectrocatalytic Arene C-H Amination , 2019, Nature Catalysis.

[24]  V. Zardetto,et al.  Chemical Analysis of the Interface between Hybrid Organic–Inorganic Perovskite and Atomic Layer Deposited Al2O3 , 2019, ACS applied materials & interfaces.

[25]  A. Martinson,et al.  Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO2 for Solar-Driven Hydrogen Evolution , 2019, ACS Energy Letters.

[26]  Xiaolin Zhu,et al.  Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. , 2019, Journal of the American Chemical Society.

[27]  Yingfang Yao,et al.  An all-inorganic lead halide perovskite-based photocathode for stable water reduction. , 2018, Chemical communications.

[28]  E. Rabani,et al.  Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation. , 2018, Nano letters.

[29]  Yong Liang,et al.  One-pot synthesis of 3-(furan-2-yl)-4-hydroxy-2H-chromen-2-ones using K10 montmorillonite clay as heterogeneous catalyst , 2018, Tetrahedron.

[30]  K. Loh,et al.  Elucidating Surface and Bulk Emission in 3D Hybrid Organic–Inorganic Lead Bromide Perovskites , 2018 .

[31]  R. Friend,et al.  Scalable Triple Cation Mixed Halide Perovskite–BiVO4 Tandems for Bias‐Free Water Splitting , 2018, Advanced Energy Materials.

[32]  Hong Wang,et al.  A Sandwich‐Like Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water , 2018, Advanced Energy Materials.

[33]  C. Berlinguette,et al.  Photoelectrochemical oxidation of organic substrates in organic media , 2017, Nature Communications.

[34]  Bai‐Xue Chen,et al.  A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. , 2017, Chemical communications.

[35]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[36]  K. Sayama,et al.  Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO4/WO3 photoanode. , 2017, Chemical communications.

[37]  Wen-Guang Li,et al.  In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband‐Photodetectors , 2017, Advanced materials.

[38]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[39]  Woo Je Chang,et al.  Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution , 2016, Nature Energy.

[40]  Luis M. Pazos-Outón,et al.  Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water , 2016, Nature Communications.

[41]  H. Fan,et al.  Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals , 2016 .

[42]  C. Tung,et al.  Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. , 2016, Journal of the American Chemical Society.

[43]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[44]  Tsunehiro Tanaka,et al.  Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation , 2016 .

[45]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[46]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[47]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[48]  Gengfeng Zheng,et al.  High-performance perovskite photoanode enabled by Ni passivation and catalysis. , 2015, Nano letters.

[49]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[50]  N. López,et al.  The virtue of defects: stable bromine production by catalytic oxidation of hydrogen bromide on titanium oxide. , 2014, Angewandte Chemie.

[51]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[52]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[53]  Ho-Jun Song,et al.  Effects of oxygen content on bioactivity of titanium oxide films fabricated on titanium by electron beam evaporation. , 2007, Journal of nanoscience and nanotechnology.

[54]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[55]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[56]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[57]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[60]  N. Weinberg,et al.  Electrochemical oxidation of organic compounds , 1968 .

[61]  Frank Stern,et al.  Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors , 1964 .

[62]  Yaofeng Yuan,et al.  Merging photochemistry with electrochemistry in organic synthesis , 2020 .

[63]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[64]  N. Clauson-Kaas,et al.  The Alkoxylation of Simple Furans and Related Reactions. , 1948 .