Convergence Analysis of a Discontinuous Galerkin Method for Wave Equations in Second-Order Form
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Haijun Wu,et al. Preasymptotic Error Analysis of Higher Order FEM and CIP-FEM for Helmholtz Equation with High Wave Number , 2014, SIAM J. Numer. Anal..
[3] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[4] Zhimin Zhang. POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .
[5] Miloš Zlámal,et al. Superconvergence and reduced integration in the finite element method , 1978 .
[6] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[7] Jens Markus Melenk,et al. Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions , 2010, Math. Comput..
[8] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[9] Xu Yang,et al. Polynomial Preserving Recovery for High Frequency Wave Propagation , 2017, J. Sci. Comput..
[10] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[11] Haijun Wu,et al. Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .
[12] Tie Zhang,et al. The derivative patch interpolation recovery technique and superconvergence for the discontinuous Galerkin method , 2014 .
[13] Zhimin Zhang,et al. Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..
[14] Zhimin Zhang,et al. Polynomial preserving recovery for anisotropic and irregular grids , 2004 .
[15] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[16] Jens Markus Melenk,et al. Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..
[17] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[18] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[19] Thomas Hagstrom,et al. A New Discontinuous Galerkin Formulation for Wave Equations in Second-Order Form , 2015, SIAM J. Numer. Anal..
[20] R. Bellman. The stability of solutions of linear differential equations , 1943 .
[21] Zhimin Zhang,et al. Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..