Continuous-variable teleportation in the characteristic-function description

We give a description of the continuous-variable teleportation protocol in terms of the characteristic functions of the quantum states involved. The Braunstein-Kimble protocol is written for an unbalanced homodyne measurement and arbitrary input and resource states. We show that the output of the protocol is a superposition between the input one-mode field and a classical one induced by measurement and classical communication. We choose to describe the input state distortion through teleportation by the average photon number of the measurement-induced field. Only in the case of symmetric Gaussian resource states we find a relation between the optimal added noise and the minimal EPR correlations used to define inseparability.