A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes
暂无分享,去创建一个
[1] Petar M. Djuric,et al. Perfect sampling: a review and applications to signal processing , 2002, IEEE Trans. Signal Process..
[2] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[3] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[4] Kristine L. Bell,et al. A unified method for measurement and tracking of contacts from an array of sensors , 2001, IEEE Trans. Signal Process..
[5] Patrick Pérez,et al. Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..
[6] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[7] Shawn Michael Herman,et al. A Particle Filtering Approach to Joint Passive Radar Tracking and Target Classification , 2002 .
[8] Christophe Andrieu,et al. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..
[9] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[10] Nando de Freitas,et al. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.
[11] Neil J. Gordon,et al. The kalman-levy filter and heavy-tailed models for tracking manoeuvring targets , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.
[12] A. D. Marrs. Asynchronous multi-sensor tracking in clutter with uncertain sensor locations using Bayesian sequential Monte Carlo methods , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).
[13] Nando de Freitas,et al. An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.
[14] D. Sornette,et al. The Kalman—Lévy filter , 2000, cond-mat/0004369.
[15] B. H. Maranda. The statistical accuracy of an arctangent bearing estimator , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).
[16] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[17] S. Godsill,et al. Special issue on Monte Carlo methods for statistical signal processing , 2002 .
[18] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[19] Simon Haykin,et al. Special Issue on Sequential State Estimation , 2004, Proc. IEEE.
[20] Geir Storvik,et al. Deterministic and Stochastic Particle Filters in State-Space Models , 2001, Sequential Monte Carlo Methods in Practice.
[21] R. Streit,et al. A linear least squares algorithm for bearings-only target motion analysis , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).
[22] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[23] James P. Reilly,et al. Reversible jump MCMC for joint detection and estimation of sources in colored noise , 2002, IEEE Trans. Signal Process..
[24] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[25] Sheldon M. Ross. Introduction to Probability Models. , 1995 .
[26] Petar M. Djuric,et al. Gaussian particle filtering , 2003, IEEE Trans. Signal Process..
[27] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[28] Rickard Karlsson,et al. Simulation Based Methods for Target Tracking , 2002 .
[29] K. Gong,et al. Fundamental properties and performance of conventional bearings-only target motion analysis , 1984 .
[30] A.H. Haddad,et al. Applied optimal estimation , 1976, Proceedings of the IEEE.
[31] A. Honkela. Approximating nonlinear transformations of probability distributions for nonlinear independent component analysis , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
[32] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[33] James S. Ball. Orthogonal polynomials, Gaussian quadratures, and PDEs , 1999, Comput. Sci. Eng..
[34] A. Kawana,et al. Bayesian model order selection using the Gibbs sampler , 1996 .
[35] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[36] William Fitzgerald,et al. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..
[37] H. Kushner. Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.
[38] H. Cox,et al. Adaptive cardioid processing , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.
[39] Peter J. W. Rayner,et al. Parameter estimation of time-varying autoregressive models using the Gibbs sampler , 1995 .
[40] S. Davies. Bearing Accuracies for Arctan Processing of Crossed Dipole Arrays , 1987, OCEANS '87.
[41] M. Briers,et al. Sequential Bayesian inference and the UKF 2 . 1 , 2004 .
[42] Thomas B. Schön,et al. On computational methods for nonlinear estimation , 2003 .
[43] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.