Barocaloric properties of quaternary Mn3(Zn,In)N for room-temperature refrigeration applications

The magnetically frustrated manganese nitride antiperovskite family displays significant changes of entropy under hydrostatic pressure that can be useful for the emerging field of barocaloric cooling. Here we show that barocaloric properties of metallic antiperovskite Mn nitrides can be tailored for room-temperature application through quaternary alloying. We find an enhanced entropy change of $|\mathrm{\ensuremath{\Delta}}{S}_{\mathrm{t}}|=37\phantom{\rule{4pt}{0ex}}\mathrm{J}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{kg}}^{\ensuremath{-}1}$ at the ${T}_{t}=300\phantom{\rule{4pt}{0ex}}\mathrm{K}$ antiferromagnetic transition of quaternary ${\mathrm{Mn}}_{3}{\mathrm{Zn}}_{0.5}{\mathrm{In}}_{0.5}\mathrm{N}$ relative to the ternary end members. The pressure-driven barocaloric entropy change of ${\mathrm{Mn}}_{3}{\mathrm{Zn}}_{0.5}{\mathrm{In}}_{0.5}\mathrm{N}$ reaches $|\mathrm{\ensuremath{\Delta}}{S}_{\mathrm{BCE}}|=20\phantom{\rule{4pt}{0ex}}\mathrm{J}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{kg}}^{\ensuremath{-}1}$ in 2.9 kbar. Our results open up a large phase space where compounds with improved barocaloric properties may be found.

[1]  G. G. Guzmán-Verri,et al.  Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range , 2019, Nature.

[2]  Y. Mokrousov,et al.  Giant anomalous Nernst effect in noncollinear antiferromagnetic Mn-based antiperovskite nitrides , 2019, Physical Review Materials.

[3]  Julie B. Staunton,et al.  Ab initiotheory of the Gibbs free energy and a hierarchy of local moment correlation functions in itinerant electron systems: The magnetism of theMn3Amaterials class , 2019, Physical Review B.

[4]  X. Moya,et al.  Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol , 2019, Nature Communications.

[5]  A. Mihai,et al.  Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films , 2019, PHYSICAL REVIEW MATERIALS.

[6]  R. Mole,et al.  Colossal barocaloric effects in plastic crystals , 2018, Nature.

[7]  X. Moya,et al.  Multisite Exchange-Enhanced Barocaloric Response in Mn3NiN , 2018, Physical Review X.

[8]  D. Boldrin,et al.  The role of competing magnetic interactions on the abnormal expansion properties in manganese antiperovskites, Mn3+xA1−xN (A = Ni, Sn) , 2017 .

[9]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[10]  J. Staunton,et al.  Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions. , 2016, Physical review letters.

[11]  J. Zemen,et al.  Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory , 2016, 1609.03515.

[12]  Nini Pryds,et al.  A regenerative elastocaloric heat pump , 2016, Nature Energy.

[13]  J. Zemen,et al.  Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides , 2015, 1512.03470.

[14]  J. Zemen,et al.  Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides , 2015 .

[15]  L. Mañosa,et al.  Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51 , 2015 .

[16]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[17]  T. Inagaki,et al.  Magnetovolume effects in manganese nitrides with antiperovskite structure , 2014, Science and technology of advanced materials.

[18]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[19]  I. Radulov,et al.  A miniature capacitance dilatometer for magnetostriction and thermal expansion measurements , 2010 .

[20]  Wondong Kim,et al.  Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3 , 2001 .

[21]  M. Rotter,et al.  A miniature capacitance dilatometer for thermal expansion and magnetostriction , 1998 .

[22]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[23]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[24]  D. Fruchart,et al.  Magnetic Studies of the Metallic Perovskite-Type Compounds of Manganese , 1978 .

[25]  D. Fruchart,et al.  DIFFRACTION NEUTRONIQUE DE Mn3ZnN , 1971 .

[26]  C. P. Bean,et al.  Magnetic Disorder as a First-Order Phase Transformation , 1962 .

[27]  Koshi Takenaka,et al.  Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.

[28]  D. Fruchart,et al.  Specific heat of the cubic metallic perovskites Mn3ZnN and Mn3GaN , 1980 .