Optimal sampling using singular value decomposition of the parameter variance space

The integration of mobile robotic vehicles with distributed sensor networks requires the development of methods for vehicle navigation to achieve sample selection and effectively estimate distributed task variables. In this paper, singular value decomposition (SVD) of the parameter variance space is introduced as a basis for optimal sample selection. Simulation results are used to evaluate the algorithm performance, and significant reduction in field prediction variance are achieved over more conventional incremental rectangular measurement grids. An example of field estimation sensors on an autonomous underwater vehicle (AUV) is described.

[1]  A.C. Sanderson,et al.  Adaptive sampling algorithms for multiple autonomous underwater vehicles , 2004, 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578).

[2]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[3]  Arthur C. Sanderson Multirobot Navigation Using Cooperative Teams , 1998, DARS.

[4]  Mbari Muse Data Team MOOS Upper-Water-Column Science Experiment (MUSE) , 2001 .

[5]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[6]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[7]  A. Bennett,et al.  Inverse Modeling of the Ocean and Atmosphere , 2002 .

[8]  Deborah Estrin,et al.  Geographical and Energy Aware Routing: a recursive data dissemination protocol for wireless sensor networks , 2002 .

[9]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  John J. Leonard,et al.  Cooperative concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[11]  James G. Bellingham Autonomous Ocean Sampling Networks , 2006 .

[12]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[13]  Deborah Estrin,et al.  Embedded Every-where: A Research Agenda for Networked Systems of Embedded Computers , 2001 .

[14]  Leonidas J. Guibas,et al.  Collaborative signal and information processing: an information-directed approach , 2003 .

[15]  Jindong Tan,et al.  Modeling multiple robot systems for area coverage and cooperation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  Daniela Rus,et al.  Interacting with sensor networks , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Paul Newman,et al.  On the Structure and Solution of the Simultaneous Localisation and Map Building Problem , 1999 .

[18]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[19]  Parham Aarabi,et al.  Self-localizing dynamic microphone arrays , 2002 .

[20]  Deborah Estrin,et al.  Coherent acoustic array processing and localization on wireless sensor networks , 2003, Proc. IEEE.

[21]  Maja J. Mataric,et al.  Issues and approaches in the design of collective autonomous agents , 1995, Robotics Auton. Syst..

[22]  Bruno Sinopoli,et al.  Distributed control applications within sensor networks , 2003, Proc. IEEE.

[23]  Gaurav S. Sukhatme,et al.  Adaptive sampling for environmental robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.