Tomographic quantum cryptography

We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.

[1]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[2]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[3]  Anthony Chefles Quantum state discrimination , 2000 .

[4]  Berthold-Georg Englert,et al.  The Mean King's Problem: Spin , 2001, quant-ph/0101065.

[5]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[6]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[7]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[8]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[9]  S. Wolf,et al.  Quantum Cryptography on Noisy Channels: Quantum versus Classical Key-Agreement Protocols , 1999, quant-ph/9902048.

[10]  N. Gisin,et al.  Coherent eavesdropping strategies for the four state quantum cryptography protocol , 1997 .

[11]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[12]  P R Tapster,et al.  Quantum cryptography: A step towards global key distribution , 2002, Nature.

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  Ueli Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[15]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[16]  C. Helstrom Quantum detection and estimation theory , 1969 .

[17]  Vaidman,et al.  How to ascertain the values of sigmax, sigma y, and sigma z of a spin-1/2 particle. , 1987, Physical review letters.

[18]  Y. Aharonov,et al.  The mean king's problem: Prime degrees of freedom , 2001, quant-ph/0101134.

[19]  S. Barnett Minimum-error discrimination between multiply symmetric states , 2001 .

[20]  Matthias Christandl,et al.  Quantum cryptography based on qutrit Bell inequalities , 2003 .

[21]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[22]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[24]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[25]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[26]  Julian Schwinger,et al.  Quantum Mechanics: Symbolism of Atomic Measurements , 2001 .

[27]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[28]  White,et al.  Entangled state quantum cryptography: eavesdropping on the ekert protocol , 1999, Physical review letters.

[29]  Christian Kurtsiefer,et al.  Ascertaining the values of sigma x, sigma y, and sigma z of a polarization qubit. , 2003, Physical review letters.