Adaptive h-version eigenfrequency analysis

In dynamics it is important to compute natural frequencies and modes with a demanded accuracy. This paper presents an adaptive h-version finite element scheme to control the discretization error in free vibration analysis. Crucial parts of an adaptive analysis are the error estimator and the error indicator of the discretization error. The error indicator is based on the energy norm of the error. The estimate that constitutes both the error estimator and the error indicator are founded on post-processed eigenmodes in the absence of exact eigenmodes. The post-processing technique used is a mix of local and global updating methods. The local updating is based on the superconvergent patch recovery technique for displacements (SPRD). This approach provides reliable results for a sufficiently fine finite element mesh due to its strong dependence on the original finite element solution. In to overcome the necessity for meshes fine enough, a preconditioned conjugate gradient method is applied for the global updating using p+1 finite element formulation. The preconditioning matrix is implemented as a diagonal of the sum of stiffness and mass matrices in order to increase computational efficiency and the rate of convergence of the iterative procedure. Rapid convergence is enhanced by choosing the initial trial eigenmodes as the SPRD improved finite element eigenmodes. Finally we improve the global updated solution by applying the SPRD technique one more time. Numerical examples show the nice properties of the final local and global updated solution as a basis for an error estimator and an error indicator in an adaptive process.

[1]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[2]  Nils-Erik Wiberg,et al.  Improved element stresses for node and element patches using superconvergent patch recovery , 1995 .

[3]  G. Gambolati,et al.  Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients , 1986 .

[4]  Nils-Erik Wiberg,et al.  An adaptive procedure for eigenvalue problems using the hierarchical finite element method , 1987 .

[5]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[6]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[7]  Romualdas Bausys,et al.  Error estimation for eigenfrequencies and eigenmodes in dynamics , 1995 .

[8]  R. Hettich,et al.  Local aspects of a method for solving membrane-eigenvalue problems by parametric semi-infinite programming , 1987 .

[9]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[10]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[11]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[12]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[13]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[14]  Louis F. Cohn,et al.  Computing in Civil and Building Engineering , 1993 .

[15]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[16]  Romualdas Bausys,et al.  Improved Eigenfrequencies and Eigenmodes in Free Vibration Analysis , 1999 .

[17]  K. K. Gupta Development of a finite dynamic element for free vibration analysis of two-dimensional structures , 1978 .

[18]  M. Papadrakakis Solving Large-Scale Problems in Mechanics: The Development and Application of Computational Solution Methods , 1993 .

[19]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity, part II: Error estimation for h -adaptive approximations on grids of triangles and quadrilaterals , 1992 .

[20]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[21]  Nils-Erik Wiberg,et al.  A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis , 1994 .

[22]  G. Gambolati,et al.  An orthogonal accelerated deflation technique for large symmetric eigenproblems , 1992 .

[23]  Robert Ian Mackie,et al.  Improving finite element predictions of modes of vibration , 1992 .

[24]  J. Tinsley Oden,et al.  Reliability in computational mechanics , 1990 .

[25]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[26]  Robert D. Cook,et al.  NEW ERROR ESTIMATION FOR C° EIGENPROBLEMS IN FINITE ELEMENT ANALYSIS , 1993 .

[27]  Giuseppe Gambolati,et al.  Nested Iterations for Symmetric Eigenproblems , 1995, SIAM J. Sci. Comput..

[28]  P. Ladevèze,et al.  Accuracy in finite element computation for eigenfrequencies , 1989 .

[29]  Related Topics,et al.  Parametric Optimization and Related Topics V , 1987 .

[30]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[31]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[32]  G. Gambolati,et al.  A comparison of Lanczos and optimization methods in the partial solution of sparse symmetric eigenproblems , 1994 .

[33]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[34]  N. Wiberg,et al.  Error estimation and adaptivity in elastodynamics , 1992 .

[35]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[36]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[37]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[38]  Young-Sam Cho,et al.  A multi-mesh, preconditioned conjugate gradient solver for eigenvalue problems in finite element models , 1996 .

[39]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .