Discrete Convex Functions on Graphs and Their Algorithmic Applications

The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems.

[1]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[2]  R. L. Francis,et al.  State of the Art-Location on Networks: A Survey. Part II: Exploiting Tree Network Structure , 1983 .

[3]  Hiroshi Hirai,et al.  Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees , 2010, Math. Program..

[4]  Martin E. Dyer,et al.  On the complexity of #CSP , 2010, STOC '10.

[5]  Fredrik Kuivinen Algorithms and Hardness Results for Some Valued CSPs , 2009 .

[6]  Eric R. Verheul,et al.  Modular Interval Spaces , 1993 .

[7]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[8]  Hirai Hiroshi A dual descent algorithm for node-capacitated multiflow problems and its applications , 2016 .

[9]  Kazuo Murota,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Recent Developments in Discrete Convex Analysis , 2008 .

[10]  Antoon Kolen,et al.  Tree network and planar rectilinear location theory , 1986 .

[11]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[12]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[13]  V. Chepoi,et al.  Weakly Modular Graphs and Nonpositive Curvature , 2014, Memoirs of the American Mathematical Society.

[14]  Alexander V. Karzanov One more well-solved case of the multifacility location problem , 2004, Discret. Optim..

[15]  Jens Vygen Discrete convex analysis , 2004 .

[16]  Hiroshi Hirai,et al.  Folder Complexes and Multiflow Combinatorial Dualities , 2011, SIAM J. Discret. Math..

[17]  Vladimir Kolmogorov,et al.  The Power of Linear Programming for General-Valued CSPs , 2013, SIAM J. Comput..

[18]  Anna Huber,et al.  Towards Minimizing k-Submodular Functions , 2012, ISCO.

[19]  Kazuo Murota,et al.  Notes on L-/M-convex functions and the separation theorems , 2000, Math. Program..

[20]  Stanislav Zivny,et al.  The Complexity of Valued Constraint Satisfaction Problems , 2012, Cognitive Technologies.

[21]  Stanislav Zivny,et al.  The Complexity of Finite-Valued CSPs , 2016, J. ACM.

[22]  H. Hirai L-convexity on graph structures , 2016, 1610.02469.

[23]  S. Fujishige,et al.  New algorithms for the intersection problem of submodular systems , 1992 .

[24]  Satoru Fujishige,et al.  Bisubmodular polyhedra, simplicial divisions, and discrete convexity , 2014, Discret. Optim..

[25]  Victor Chepoi,et al.  A Multifacility Location Problem on Median Spaces , 1996, Discret. Appl. Math..

[26]  Vladimir Kolmogorov,et al.  Submodularity on a Tree: Unifying $L^\natural$ -Convex and Bisubmodular Functions , 2010, MFCS.

[27]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[28]  Gyula Pap Some new results on node-capacitated packing of A-paths , 2007, STOC '07.

[29]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[30]  Maxim A. Babenko,et al.  A Scaling Algorithm for the Maximum Node-Capacitated Multiflow Problem , 2008, ESA.

[31]  Yusuke Kobayashi,et al.  The Generalized Terminal Backup Problem , 2014, SODA.

[32]  Elliot Anshelevich,et al.  Terminal Backup, 3D Matching, and Covering Cubic Graphs , 2011, SIAM J. Comput..

[33]  Hiroshi Hirai,et al.  L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem , 2014, Discret. Optim..

[34]  Kazuo Murota,et al.  Exact bounds for steepest descent algorithms of L-convex function minimization , 2014, Oper. Res. Lett..

[35]  A. Frank Connections in Combinatorial Optimization , 2011 .

[36]  Akiyoshi Shioura,et al.  ALGORITHMS FOR L-CONVEX FUNCTION MINIMIZATION: CONNECTION BETWEEN DISCRETE CONVEX ANALYSIS AND OTHER RESEARCH FIELDS , 2017 .

[37]  Fredrik Kuivinen,et al.  On the complexity of submodular function minimisation on diamonds , 2009, Discret. Optim..

[38]  Maxim A. Babenko,et al.  A Fast Algorithm for the Path 2-Packing Problem , 2009, Theory of Computing Systems.

[39]  Satoru Iwata,et al.  Algorithms for submodular flows , 2000 .

[40]  P. Favati Convexity in nonlinear integer programming , 1990 .

[41]  Takuro Fukunaga Approximating the Generalized Terminal Backup Problem via Half-integral Multiflow Relaxation , 2015, STACS.

[42]  G. Pap Strongly polynomial time solvability of integral and half-integral node-capacitated multiflow problems , 2008 .

[43]  Yuni Iwamasa,et al.  On a general framework for network representability in discrete optimization , 2016, Journal of Combinatorial Optimization.

[44]  Refael Hassin,et al.  The minimum cost flow problem: A unifying approach to dual algorithms and a new tree-search algorithm , 1983, Math. Program..

[45]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[46]  Alexander V. Karzanov,et al.  Minimum cost multiflows in undirected networks , 1994, Math. Program..

[47]  Sebastian Ehrlichmann,et al.  Metric Spaces Of Non Positive Curvature , 2016 .

[48]  Hiroshi Hirai,et al.  Discrete convexity and polynomial solvability in minimum 0-extension problems , 2013, Math. Program..

[49]  Stanislav Zivny,et al.  The complexity of finite-valued CSPs , 2013, STOC '13.

[50]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[51]  S. Fujishige,et al.  Minimizing Submodular Functions on Diamonds via Generalized Fractional Matroid Matchings , 2014 .

[52]  Andrew V. Goldberg,et al.  Scaling Methods for Finding a Maximum Free Multiflow of Minimum Cost , 1997, Math. Oper. Res..