A hybrid conjugate gradient method based on the self-scaled memoryless BFGS update
暂无分享,去创建一个
[1] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[2] Emilio Spedicato,et al. Broyden's quasi-Newton methods for a nonlinear system of equations and unconstrained optimization: a review and open problems , 2014, Optim. Methods Softw..
[3] A. Perry. A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory , 1977 .
[4] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[5] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[6] C. Storey,et al. Global convergence result for conjugate gradient methods , 1991 .
[7] Reza Ghanbari,et al. A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update , 2017, 4OR.
[8] Neculai Andrei,et al. Another hybrid conjugate gradient algorithm for unconstrained optimization , 2008, Numerical Algorithms.
[9] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[10] C. X. Kou,et al. A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization , 2015, J. Optim. Theory Appl..
[11] D. G. Sotiropoulos,et al. A memoryless BFGS neural network training algorithm , 2009, 2009 7th IEEE International Conference on Industrial Informatics.
[12] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[13] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[14] Jorge Nocedal,et al. Analysis of a self-scaling quasi-Newton method , 1993, Math. Program..
[15] Duan Li,et al. On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.
[16] D. Luenberger,et al. Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .
[17] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[18] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[19] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[20] M. Al-Baali. Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms , 1998 .
[21] Mehiddin Al-Baali. Global and Superlinear Convergence of a Restricted Class of Self-Scaling Methods with Inexact Line Searches, for Convex Functions , 1998, Comput. Optim. Appl..
[22] Neculai Andrei,et al. Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization , 2007, Optim. Methods Softw..
[23] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[24] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[25] N. Andrei. Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization , 2009 .
[26] Yu-Hong Dai,et al. A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..
[27] Reza Ghanbari,et al. A hybridization of the Hestenes–Stiefel and Dai–Yuan conjugate gradient methods based on a least-squares approach , 2015, Optim. Methods Softw..
[28] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[29] M. Al-Baali. Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .
[30] D. Shanno. On the Convergence of a New Conjugate Gradient Algorithm , 1978 .
[31] D. Touati-Ahmed,et al. Efficient hybrid conjugate gradient techniques , 1990 .
[32] Nezam Mahdavi-Amiri,et al. Two effective hybrid conjugate gradient algorithms based on modified BFGS updates , 2011, Numerical Algorithms.
[33] Nezam Mahdavi-Amiri,et al. Two Modified Hybrid Conjugate Gradient Methods Based on a Hybrid Secant Equation , 2013 .
[34] T. M. Williams,et al. Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .
[35] Neculai Andrei,et al. Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization , 2010, Numerical Algorithms.
[36] William W. Hager,et al. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.
[37] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[38] Li Zhang,et al. Two descent hybrid conjugate gradient methods for optimization , 2008 .
[39] Shmuel S. Oren,et al. Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..
[40] D. Luenberger,et al. SELF-SCALING VARIABLE METRIC ( SSVM ) ALGORITHMS Part I : Criteria and Sufficient Conditions for Scaling a Class of Algorithms * t , 2007 .
[41] Yuhong Dai. Nonlinear Conjugate Gradient Methods , 2011 .
[42] Reza Ghanbari,et al. Two hybrid nonlinear conjugate gradient methods based on a modified secant equation , 2014 .
[43] Shmuel S. Oren,et al. Self-scaling variable metric algorithms for unconstrained minimization , 1972 .
[44] C. Storey,et al. Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .
[45] Ya-Xiang Yuan,et al. An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..