Oligodendrocytes and Ischemic Brain Injury

Oligodendrocytes, myelin-forming glial cells of the central nervous system, are vulnerable to damage in a variety of neurologic diseases. Much is known of primary myelin injury, which occurs in settings of genetic dysmyelination or demyelinating disease. There is growing awareness that oligodendrocytes are also targets of injury in acute ischemia. Recognition of oligodendrocyte damage in animal models of ischemia requires attention to their distinct histologic features or use of specific immunocytochemical markers. Like neurons, oligodendrocytes are highly sensitive to injury by oxidative stress, excitatory amino acids, trophic factor deprivation, and activation of apoptotic pathways. Understanding mechanisms of oligodendrocyte death may suggest new therapeutic strategies to preserve or restore white matter function and structure after ischemic insults.

[1]  P. Lopresti,et al.  Functional implications for the microtubule-associated protein tau: Localization in oligodendrocytes , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Scherer,et al.  Expression and regulation of kainate and AMPA receptors in uncommitted and committed neural progenitors , 1995, Neurochemical Research.

[3]  J. Goldman Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS , 2005, Journal of Neuro-Oncology.

[4]  J. Ávila,et al.  Tau Dephosphorylation at Tau-1 Site Correlates with its Association to Cell Membrane , 2004, Neurochemical Research.

[5]  Pietro Mazzoni,et al.  The Behavioral Neurology of White Matter , 2003 .

[6]  J. Mcculloch,et al.  Grey Matter and White Matter Ischemic Damage is Reduced by the Competitive AMPA Receptor Antagonist, SPD 502 , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  T. Wood,et al.  Insulin-like Growth Factor I, but Not Neurotrophin-3, Sustains Akt Activation and Provides Long-Term Protection of Immature Oligodendrocytes from Glutamate-Mediated Apoptosis , 2002, Molecular and Cellular Neuroscience.

[8]  G. Almazan,et al.  AMPA receptor‐mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase 3 , 2002, Journal of neurochemistry.

[9]  M. Shibata,et al.  Temporal Profiles of the Subcellular Localization of Bim, a BH3-Only Protein, during Middle Cerebral Artery Occlusion in Mice , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  H. Kinney,et al.  Arrested Oligodendrocyte Lineage Progression During Human Cerebral White Matter Development: Dissociation Between the Timing of Progenitor Differentiation and Myelinogenesis , 2002, Journal of neuropathology and experimental neurology.

[11]  M. Goldberg,et al.  Cerebrovascular Disease: Cellular mechanisms of white matter ischemia: what can we learn from culture models? , 2002 .

[12]  J. Volpe,et al.  Neurobiology of Periventricular Leukomalacia in the Premature Infant , 2001, Pediatric Research.

[13]  S. Levison,et al.  Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors , 2001, Developmental Neuroscience.

[14]  Kortaro Tanaka,et al.  Phosphorylation of Cyclic Adenosine Monophosphate Response Element Binding Protein in Oligodendrocytes in the Corpus Callosum after Focal Cerebral Ischemia in the Rat , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  M. Fini,et al.  Effects of Matrix Metalloproteinase-9 Gene Knock-Out on the Proteolysis of Blood–Brain Barrier and White Matter Components after Cerebral Ischemia , 2001, The Journal of Neuroscience.

[16]  G. Konat,et al.  Hydrogen peroxide induces transient dephosphorylation of tau protein in cultured rat oligodendrocytes , 2001, Neuroscience Letters.

[17]  D. Graham,et al.  Ebselen Protects Both Gray and White Matter in a Rodent Model of Focal Cerebral Ischemia , 2001, Stroke.

[18]  Irving Ea,et al.  Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. , 2001 .

[19]  T N Behar,et al.  Analysis of fractal dimension of O2A glial cells differentiating in vitro. , 2001, Methods.

[20]  E. E. Kelland,et al.  Group I metabotropic glutamate receptors limit AMPA receptor-mediated oligodendrocyte progenitor cell death. , 2001, European journal of pharmacology.

[21]  Kortaro Tanaka,et al.  Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain , 2001, Neuroreport.

[22]  M. Goldberg,et al.  AMPA/Kainate Receptor Activation Mediates Hypoxic Oligodendrocyte Death and Axonal Injury in Cerebral White Matter , 2001, The Journal of Neuroscience.

[23]  E. Lehrmann,et al.  Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain , 2001, Experimental Brain Research.

[24]  F. Sharp,et al.  Microglia/Macrophages Proliferate in Striatum and Neocortex but Not in Hippocampus after Brief Global Ischemia That Produces Ischemic Tolerance in Gerbil Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  N. Baumann,et al.  Biology of oligodendrocyte and myelin in the mammalian central nervous system. , 2001, Physiological reviews.

[26]  A. Pérez-Samartín,et al.  The link between excitotoxic oligodendroglial death and demyelinating diseases , 2001, Trends in Neurosciences.

[27]  H. Kinney,et al.  Late Oligodendrocyte Progenitors Coincide with the Developmental Window of Vulnerability for Human Perinatal White Matter Injury , 2001, The Journal of Neuroscience.

[28]  Richard Reynolds,et al.  The oligodendrocyte precursor cell in health and disease , 2001, Trends in Neurosciences.

[29]  Pamela L. Follett,et al.  NBQX Attenuates Excitotoxic Injury in Developing White Matter , 2000, The Journal of Neuroscience.

[30]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[31]  H. Okano,et al.  Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. , 2000, The Journal of clinical investigation.

[32]  P. Stys,et al.  Important role of reverse Na(+)-Ca(2+) exchange in spinal cord white matter injury at physiological temperature. , 2000, Journal of neurophysiology.

[33]  T. Sundt,et al.  White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism. , 2000, Stroke.

[34]  M. Goldberg,et al.  Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. , 2000, Stroke.

[35]  M. Hori,et al.  Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. , 2000, Stroke.

[36]  M. Wegner Transcriptional control in myelinating glia: Flavors and spices , 2000, Glia.

[37]  D. Pleasure,et al.  Neurotrophin‐3 (NT‐3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor‐mediated excitotoxicity , 2000, Journal of neuroscience research.

[38]  T. Uchihara,et al.  Appearance of tau-2 immunoreactivity in glial cells in human brain with cerebral infarction , 2000, Neuroscience Letters.

[39]  J. Mcculloch,et al.  Quantitative Assessment of Ischemic Pathology in Axons, Oligodendrocytes, and Neurons: Attenuation of Damage after Transient Ischemia , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  A. Reith,et al.  Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. , 2000, Brain research. Molecular brain research.

[41]  A. Shah,et al.  BDNF Blocks Caspase-3 Activation in Neonatal Hypoxia–Ischemia , 2000, Neurobiology of Disease.

[42]  D. Pleasure,et al.  Non-N-methyl-d-aspartate glutamate receptors mediate oxygen–glucose deprivation-induced oligodendroglial injury , 2000, Brain Research.

[43]  P. Casaccia‐Bonnefil Cell death in the oligodendrocyte lineage: A molecular perspective of life/death decisions in development and disease , 2000, Glia.

[44]  M. Schwab,et al.  NI‐35/250/nogo‐a: A neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS , 2000, Glia.

[45]  T. Möller,et al.  Rapid Ischemic Cell Death in Immature Oligodendrocytes: A Fatal Glutamate Release Feedback Loop , 2000, The Journal of Neuroscience.

[46]  M. Beattie,et al.  Cell death and plasticity after experimental spinal cord injury. , 2000, Progress in brain research.

[47]  L. Turski,et al.  Autoimmune encephalomyelitis ameliorated by AMPA antagonists , 2000, Nature Medicine.

[48]  D. Pitt,et al.  Glutamate excitotoxicity in a model of multiple sclerosis , 2000, Nature Medicine.

[49]  C. Matute,et al.  AMPA and Kainate Receptors Each Mediate Excitotoxicity in Oligodendroglial Cultures , 1999, Neurobiology of Disease.

[50]  Merrill,et al.  Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease , 1999, Neuropathology and applied neurobiology.

[51]  F. Barone,et al.  Inflammatory Mediators and Stroke: New Opportunities for Novel Therapeutics , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  G. Mealing,et al.  Novel Injury Mechanism in Anoxia and Trauma of Spinal Cord White Matter: Glutamate Release via Reverse Na+-dependent Glutamate Transport , 1999, The Journal of Neuroscience.

[53]  J. Wrathall,et al.  Effects of the Sodium Channel Blocker Tetrodotoxin on Acute White Matter Pathology After Experimental Contusive Spinal Cord Injury , 1999, The Journal of Neuroscience.

[54]  C. Mathiesen,et al.  SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. , 1999, The Journal of pharmacology and experimental therapeutics.

[55]  Joseph J. Volpe,et al.  Maturation-Dependent Vulnerability of Oligodendrocytes to Oxidative Stress-Induced Death Caused by Glutathione Depletion , 1998, The Journal of Neuroscience.

[56]  G. Drewes,et al.  MAPs, MARKs and microtubule dynamics. , 1998, Trends in biochemical sciences.

[57]  H. Kettenmann,et al.  Oligodendrocytes and Microglia Are Selectively Vulnerable to Combined Hypoxia and Hypoglycemia Injury in Vitro , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  L. Hertz,et al.  Peroxide‐scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress , 1998, Glia.

[59]  J. Mcdonald,et al.  Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity , 1998, Nature Medicine.

[60]  C. Petito,et al.  Selective Glial Vulnerability following Transient Global Ischemia in Rat Brain , 1998, Journal of neuropathology and experimental neurology.

[61]  R. Miledi,et al.  Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Chopp,et al.  Immunoreactivity of Cyclin D1/cdk4 in Neurons and Oligodendrocytes After Focal Cerebral Ischemia in Rat , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[63]  J. Mcculloch,et al.  Rapid Alteration of Tau in Oligodendrocytes After Focal Ischemic Injury in the Rat: Involvement of Free Radicals , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[64]  J. Wrathall,et al.  Delayed Antagonism of AMPA/Kainate Receptors Reduces Long-Term Functional Deficits Resulting from Spinal Cord Trauma , 1997, Experimental Neurology.

[65]  C. Richter-Landsberg,et al.  Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes , 1997, Cell and Tissue Research.

[66]  T. Yanagihara,et al.  Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia , 1997, Neuroscience.

[67]  M. Fehlings,et al.  Role of NMDA and Non-NMDA Ionotropic Glutamate Receptors in Traumatic Spinal Cord Axonal Injury , 1997, The Journal of Neuroscience.

[68]  D. Pleasure,et al.  Expression of N‐methyl‐D‐aspartate (NMDA) and non‐NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cell lines , 1996, Journal of neuroscience research.

[69]  C. Sato-Bigbee,et al.  Treatment of oligodendrocytes with antisense deoxyoligonucleotide directed against CREB mRNA: Effect on the cyclic AMP‐dependent induction of myelin basic protein expression , 1996, Journal of neuroscience research.

[70]  J. Garcìa,et al.  Cerebral white matter is highly vulnerable to ischemia. , 1996, Stroke.

[71]  B. Juurlink,et al.  Low Glutathione and High Iron Govern the Susceptibility of Oligodendroglial Precursors to Oxidative Stress , 1996, Journal of neurochemistry.

[72]  D. Graham,et al.  Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury , 1996, Neuroscience Letters.

[73]  J. Mcculloch,et al.  Intracortical perfusion of glutamate in vivo induces alterations of tau and microtubule-associated protein 2 immunoreactivity in the rat , 1996, Acta Neuropathologica.

[74]  P. Contreras,et al.  Increased Expression of IL-1β Converting Enzyme in Hippocampus after Ischemia: Selective Localization in Microglia , 1996, The Journal of Neuroscience.

[75]  Robert H Miller Oligodendrocyte origins , 1996, Trends in Neurosciences.

[76]  J. Wrathall,et al.  Amelioration of Functional Deficits from Spinal Cord Trauma with Systemically Administered NBQX, an Antagonist of Non-N-methyl-D-aspartate receptors , 1996, Experimental Neurology.

[77]  J. Levine,et al.  The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. , 1996, Perspectives on developmental neurobiology.

[78]  G. Almazan,et al.  Glutamate Induces c‐fos Proto‐oncogene Expression and Inhibits Proliferation in Oligodendrocyte Progenitors: Receptor Characterization , 1995, The European journal of neuroscience.

[79]  B. Juurlink,et al.  Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species , 1995, Brain Research.

[80]  V. Gallo,et al.  Excitatory amino acid receptors in glia: Different subtypes for distinct functions? , 1995, Journal of neuroscience research.

[81]  R. Osathanondh,et al.  Oligodendroglial development in human fetal cerebrum , 1995, Annals of neurology.

[82]  J. Garcìa,et al.  The significance of cerebral white matter abnormalities 100 years after Binswanger's report. A review. , 1995, Stroke.

[83]  D. Dewar,et al.  Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study , 1995, Brain Research.

[84]  D. Pleasure,et al.  α‐Amino‐3‐Hydroxy‐5‐Methyl‐4‐Isoxazolepropionate (AMPA) Receptors Mediate Excitotoxicity in the Oligodendroglial Lineage , 1995 .

[85]  K. Borges,et al.  Ampa/kainate receptor activation in murine oligodendrocyte precursor cells leads to activation of a cation conductance, calcium influx and blockade of delayed rectifying K+ channels , 1994, Neuroscience.

[86]  J. Wrathall,et al.  Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  B. Barres,et al.  Control of oligodendrocyte number in the developing rat optic nerve , 1994, Neuron.

[88]  V. Gallo,et al.  Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Holzwarth,et al.  Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  M. Mayer,et al.  Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor , 1994, Neuron.

[91]  M. Goldberg,et al.  Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Virginia M. Y. Lee,et al.  Even in culture, oligodendrocytes myelinate solely axons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. McCarthy,et al.  Oligodendroglial lineage cells express neuroligand receptors , 1993, Glia.

[94]  J. Volpe,et al.  Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  B. Barres,et al.  Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons , 1993, Nature.

[96]  W. Cammer,et al.  A Pi Form of Glutathione‐S‐Transferase Is a Myelin‐and Oligodendrocyte‐Associated Enzyme in Mouse Brain , 1991, Journal of neurochemistry.

[97]  Seung U. Kim,et al.  Oligodendroglial cell death induced by oxygen radicals and its protection by catalase , 1991, Journal of neuroscience research.

[98]  T. Iwaki,et al.  Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues. , 1991, Laboratory investigation; a journal of technical methods and pathology.

[99]  A. Mathie,et al.  Activation of glutamate receptors and glutamate uptake in identified macroglial cells in rat cerebellar cultures. , 1991, The Journal of physiology.

[100]  D. Corey,et al.  Ion channels in vertebrate glia. , 1990, Annual review of neuroscience.

[101]  M. Dąmbska,et al.  Early and Late Neuropathological Changes in Perinatal White Matter Damage , 1989, Journal of child neurology.

[102]  M. Raff Glial cell diversification in the rat optic nerve. , 1989, Science.

[103]  S. Hockfield,et al.  In situ demonstration of mature oligodendrocytes and their processes: An immunocytochemical study with a new monoclonal antibody, Rip , 1989, Glia.

[104]  M. Shelanski,et al.  Light and electron microscope localization of the microtubule- associated tau protein in rat brain , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  J. Levine,et al.  Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  C. Petito Transformation of Postischemic Perineuronal Glial Cells. I. Electron Microscopic Studies , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[107]  M. Noble,et al.  Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. , 1984, The EMBO journal.

[108]  F. Gilles,et al.  Acquired perinatal leukoencephalopathy , 1984, Annals of neurology.

[109]  S. Ludwin THE FUNCTION OF PERINEURONAL SATELLITE OLIGODENDROCYTES: AN IMMUNOHISTOCHEMICAL STUDY , 1984, Neuropathology and applied neurobiology.

[110]  M. Raff,et al.  A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium , 1983, Nature.

[111]  I. Griffiths,et al.  Nerve fibres in spinal cord impact injuries Part 1. Changes in the myelin sheath during the initial 5 weeks , 1983, Journal of the Neurological Sciences.

[112]  K. McCarthy,et al.  Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue , 1980, The Journal of cell biology.

[113]  J A Corsellis,et al.  VARIATION WITH AGE IN THE VOLUMES OF GREY AND WHITE MATTER IN THE CEREBRAL HEMISPHERES OF MAN: MEASUREMENTS WITH AN IMAGE ANALYSER , 1980, Neuropathology and applied neurobiology.

[114]  P. Mandel,et al.  Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method , 1979, Brain Research.

[115]  L. Caplan,et al.  Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease) , 1978, Neurology.

[116]  D. Silberberg,et al.  Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture , 1978, Nature.

[117]  B. Trump,et al.  Cellular events during partial cerebral ischemia , 1977, Virchows Archiv B Cell Pathology.

[118]  J. Garcìa,et al.  Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. , 1977, Virchows Archiv. B, Cell pathology.

[119]  P. Prior,et al.  Cyanide intoxication in Macaca mulatta Physiological and neuropathological aspects , 1977, Journal of the Neurological Sciences.

[120]  W. Mcdonald,et al.  Demyelination and remyelination after acute spinal cord compression. , 1973, Experimental neurology.

[121]  J. Poirier,et al.  [The oligodendrocyte]. , 1972, La Nouvelle presse medicale.

[122]  F. Gilles,et al.  Morphologic correlates of age at death of infants with perinatal telencephalic leukoencephalopathy. , 1971, The American journal of pathology.

[123]  F. Gilles,et al.  Perinatal telencephalic leucoencephalopathy. , 1969, Journal of neurology, neurosurgery, and psychiatry.