Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

[1]  S. Hsiao,et al.  Efficient All‐Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum , 2016, Advanced materials.

[2]  M. Grätzel,et al.  Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.

[3]  Matthew R. Leyden,et al.  Organometal halide perovskite thin films and solar cells by vapor deposition , 2016 .

[4]  Po-Shen Shen,et al.  Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module , 2016 .

[5]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[6]  J. Keum,et al.  Deciphering Halogen Competition in Organometallic Halide Perovskite Growth. , 2016, Journal of the American Chemical Society.

[7]  T. Edvinsson,et al.  Vapor phase conversion of PbI2 to CH3NH3PbI3 : spectroscopic evidence for formation of an intermediate phase , 2016 .

[8]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[9]  Dong‐Yu Kim,et al.  Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells , 2016, Scientific Reports.

[10]  Y. Qi,et al.  Rapid perovskite formation by CH3NH2 gas-induced intercalation and reaction of PbI2 , 2016 .

[11]  Jay B. Patel,et al.  Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition. , 2016, The journal of physical chemistry letters.

[12]  Y. Qi,et al.  Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition , 2016 .

[13]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[14]  Chenxi Xu,et al.  Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells , 2015 .

[15]  J. Teuscher,et al.  Control and Study of the Stoichiometry in Evaporated Perovskite Solar Cells. , 2015, ChemSusChem.

[16]  R. Binions,et al.  A simple, low-cost CVD route to high-quality CH3NH3PbI3 perovskite thin films , 2015 .

[17]  R. Scheer,et al.  Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX2 (X = I, Cl) precursors , 2015 .

[18]  Jin He,et al.  Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method , 2015, Scientific Reports.

[19]  Lijia Liu,et al.  Tracking the formation of methylammonium lead triiodide perovskite , 2015 .

[20]  G. Cui,et al.  Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[21]  Matthew R. Leyden,et al.  Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations , 2015 .

[22]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[23]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[24]  Suneth C. Watthage,et al.  Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites , 2015 .

[25]  C. Yuan,et al.  A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves , 2015 .

[26]  Tianhong Cui,et al.  A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells , 2015 .

[27]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[28]  Yuliang Zhang,et al.  Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition , 2015 .

[29]  Chun‐Sing Lee,et al.  Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties , 2015 .

[30]  W. W. Leung,et al.  Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers , 2015 .

[31]  Xing Zhang,et al.  Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. , 2015, ACS applied materials & interfaces.

[32]  I. Parkin,et al.  Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition , 2015 .

[33]  Michele Sessolo,et al.  Perovskite solar cells prepared by flash evaporation. , 2015, Chemical communications.

[34]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[35]  Martin A. Green,et al.  Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition , 2015 .

[36]  Min-Soo Choi,et al.  Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers , 2015 .

[37]  Tao Chen,et al.  Layer‐by‐Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells , 2015, Advanced materials.

[38]  Hong Lin,et al.  Comparative study of vapor- and solution-crystallized perovskite for planar heterojunction solar cells. , 2015, ACS applied materials & interfaces.

[39]  C. Yuan,et al.  Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. , 2015, ACS applied materials & interfaces.

[40]  Andrew R. Kitahara,et al.  High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer , 2015 .

[41]  Cinzia Giannini,et al.  Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. , 2015, The journal of physical chemistry letters.

[42]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[43]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[44]  M. Kanatzidis,et al.  Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. , 2014, Journal of the American Chemical Society.

[45]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[46]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[47]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .

[48]  R. Scheer,et al.  Monitoring the Phase Formation of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction. , 2014, The journal of physical chemistry letters.

[49]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[50]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[51]  Henk J. Bolink,et al.  Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm , 2014 .

[52]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[53]  G. Cui,et al.  Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C-60 fullerene planar solar cells , 2014 .

[54]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[55]  P. O’Brien,et al.  Ambient pressure aerosol-assisted chemical vapour deposition of (CH₃NH₃)PbBr₃, an inorganic-organic perovskite important in photovoltaics. , 2014, Chemical communications.

[56]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[57]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[58]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[59]  M. Grätzel,et al.  Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2013, Science.

[60]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[61]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[62]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[63]  I. Parkin,et al.  Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. , 2013, Dalton transactions.

[64]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[65]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[66]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[67]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[68]  I. Parkin,et al.  Aerosol Assisted Chemical Vapor Deposition of Gold and Nanocomposite Thin Films from Hydrogen Tetrachloroaurate(III) , 2007 .

[69]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[70]  David B. Mitzi,et al.  Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique , 1999 .

[71]  Tetsuo Tsutsui,et al.  Self-organized growth of PbI-based layered Perovskite quantum well by dual-source vapor deposition , 1997 .

[72]  Kai Zhu,et al.  Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers , 2016 .

[73]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[74]  Konstantinos Chondroudis,et al.  Effect of Thermal Annealing on the Optical and Morphological Properties of (AETH)PbX4 (X = Br, I) Perovskite Films Prepared Using Single Source Thermal Ablation , 2000 .