Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO2 layers
暂无分享,去创建一个
[1] M. Oehme,et al. Germanium tin light emitters on silicon , 2014 .
[2] Yasuhiko Ishikawa,et al. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .
[3] Lockwood,et al. Strain-shift coefficients for phonons in Si1-xGex epilayers on silicon. , 1992, Physical review. B, Condensed matter.
[4] Jifeng Liu. Monolithically Integrated Ge-on-Si Active Photonics , 2014 .
[5] S. Su,et al. The contributions of composition and strain to the phonon shift in Ge1―xSnx alloys , 2011 .
[6] J. Locquet,et al. Tensile-Strained GeSn Metal–Oxide–Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy , 2013 .
[7] Hongtao Lin,et al. Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.
[8] Thomas R. Harris,et al. Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content , 2013 .
[9] C. L. Senaratne,et al. Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys , 2014 .
[10] J. Faist,et al. Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.
[11] Van de Walle Cg. Band lineups and deformation potentials in the model-solid theory. , 1989 .
[12] J. Brouillet,et al. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics , 2013 .
[13] Jörg Schulze,et al. GeSn p-i-n detectors integrated on Si with up to 4% Sn , 2012 .
[14] Stefan Zollner,et al. Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .
[15] Wilfried Vandervorst,et al. Crystalline Properties and Strain Relaxation Mechanism of CVD Grown GeSn , 2013 .
[16] Oussama Moutanabbir,et al. Strain and composition effects on Raman vibrational modes of silicon-germanium-tin ternary alloys , 2013 .
[17] Wei Du,et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence , 2014 .
[18] J. Locquet,et al. Ultrathin GeSn p-channel MOSFETs grown directly on Si(111) substrate using solid phase epitaxy , 2015 .
[19] H. Presting,et al. Deformation Potentials of k = 0 States of Tetrahedral Semiconductors , 1984, November 1.
[20] Stephan W Koch,et al. Physics of Optoelectronic Devices , 1995 .
[21] J. Brouillet,et al. Pseudo single crystal, direct-band-gap Ge0.89Sn0.11 on amorphous dielectric layers towards monolithic 3D photonic integration , 2014 .
[22] Shu-Wei Chang,et al. Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.
[23] Mark Beals,et al. Process flow innovations for photonic device integration in CMOS , 2008, SPIE OPTO.
[24] John Tolle,et al. Raman scattering in Ge1−ySny alloys , 2007 .