Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO2 layers

We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge1−xSnx thin films (0.074 < x < 0.085) crystallized on amorphous SiO2 towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

[1]  M. Oehme,et al.  Germanium tin light emitters on silicon , 2014 .

[2]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[3]  Lockwood,et al.  Strain-shift coefficients for phonons in Si1-xGex epilayers on silicon. , 1992, Physical review. B, Condensed matter.

[4]  Jifeng Liu Monolithically Integrated Ge-on-Si Active Photonics , 2014 .

[5]  S. Su,et al.  The contributions of composition and strain to the phonon shift in Ge1―xSnx alloys , 2011 .

[6]  J. Locquet,et al.  Tensile-Strained GeSn Metal–Oxide–Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy , 2013 .

[7]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[8]  Thomas R. Harris,et al.  Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content , 2013 .

[9]  C. L. Senaratne,et al.  Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys , 2014 .

[10]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[11]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[12]  J. Brouillet,et al.  Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics , 2013 .

[13]  Jörg Schulze,et al.  GeSn p-i-n detectors integrated on Si with up to 4% Sn , 2012 .

[14]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .

[15]  Wilfried Vandervorst,et al.  Crystalline Properties and Strain Relaxation Mechanism of CVD Grown GeSn , 2013 .

[16]  Oussama Moutanabbir,et al.  Strain and composition effects on Raman vibrational modes of silicon-germanium-tin ternary alloys , 2013 .

[17]  Wei Du,et al.  Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence , 2014 .

[18]  J. Locquet,et al.  Ultrathin GeSn p-channel MOSFETs grown directly on Si(111) substrate using solid phase epitaxy , 2015 .

[19]  H. Presting,et al.  Deformation Potentials of k = 0 States of Tetrahedral Semiconductors , 1984, November 1.

[20]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[21]  J. Brouillet,et al.  Pseudo single crystal, direct-band-gap Ge0.89Sn0.11 on amorphous dielectric layers towards monolithic 3D photonic integration , 2014 .

[22]  Shu-Wei Chang,et al.  Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.

[23]  Mark Beals,et al.  Process flow innovations for photonic device integration in CMOS , 2008, SPIE OPTO.

[24]  John Tolle,et al.  Raman scattering in Ge1−ySny alloys , 2007 .