The catalytic oxidation of NH3 on Co3O4(110): A theoretical study

[1]  A. Selloni,et al.  DFT+U Study of the Surface Structure and Stability of Co3O4(110): Dependence on U , 2015 .

[2]  B. Haynes,et al.  The role of oxygen during the catalytic oxidation of ammonia on Co3O4(1 0 0) , 2014 .

[3]  L. Isupova,et al.  Oxidation of ammonia to NOx in a two bed reactor (Pt gauzes + oxide monolytic layer): Experimental studies and mathematical modelling , 2014 .

[4]  B. Haynes,et al.  Insight into oxygen stability and vacancy formation on Co3O4 model slabs , 2013 .

[5]  Zongbin Zhao,et al.  Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes , 2013 .

[6]  B. Haynes,et al.  Periodic density functional study of Co3O4 surfaces , 2011 .

[7]  K. Krawczyk,et al.  Direct nitrous oxide decomposition with a cobalt oxide catalyst , 2010 .

[8]  G. Lu,et al.  Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. , 2010, Journal of the American Chemical Society.

[9]  Wenjie Shen,et al.  Low-temperature oxidation of CO catalysed by Co3O4 nanorods , 2009, Nature.

[10]  A. Kotarba,et al.  Decomposition of N2O over the surface of cobalt spinel: A DFT account of reactivity experiments , 2008 .

[11]  M. Langell,et al.  Cobalt oxide surface chemistry: The interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with oxygen and water , 2008 .

[12]  Y. Teraoka,et al.  Catalytic decomposition of N2O over CeO2 promoted CO3O4 spinel catalyst , 2007 .

[13]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[14]  A. Jansen,et al.  Ammonia activation on platinum {1 1 1}: A density functional theory study , 2006 .

[15]  Freek Kapteijn,et al.  Formation and control of N2O in nitric acid production , 2003 .

[16]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[17]  I. A. Zolotarskii,et al.  Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives , 2000 .

[18]  J. Petryk,et al.  Cobalt oxide catalysts for ammonia oxidation activated with cerium and lanthanum , 2000 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  K. Krawczyk,et al.  The properties of cobalt oxide catalyst for ammonia oxidation , 1998 .

[21]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  J. Armor,et al.  Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams , 1996 .

[25]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[26]  G. I. Golodets,et al.  Catalytic oxidation of ammonia: I. Reaction kinetics and mechanism , 1975 .

[27]  H. Zeng,et al.  Synthesis and characterization of Mg–Co catalytic oxidematerials forlow-temperature N2O decomposition , 1997 .